[1]
H. J. Round, A Note on Carborundum, Electrical World 19 (1907) 309.
Google Scholar
[2]
O. V. Losev, Telegrafiya i Telefoniya bez Provodov, 44 (1927) 485–494.
Google Scholar
[3]
R.J. Cushman, Film−type infrared photoconductors, Proc. IRE 47 (1959) 1471–1475.
DOI: 10.1109/jrproc.1959.287039
Google Scholar
[4]
http: /www. nobelprize. org/nobel_prizes/physics/laureates/1956.
Google Scholar
[5]
Kahng, Dawon, Electric Field Controlled Semiconductor Device,U. S. Patent No. 3, 102, 230 (Filed 31 May 31, 1960, issued August 27, 1963).
Google Scholar
[6]
Robert N. Hall, G. E. Fenner; J. D. Kingsley; T. J. Soltys; R. O. Carlson, Coherent Light Emission From GaAs Junctions, Physical Review Letters 9 (9) (1962), 366–368.
DOI: 10.1103/physrevlett.9.366
Google Scholar
[7]
Marshall Nathan, W. P. Dumke, Gerald Burns, F. H. Dill, Lasher, Gordon Stimulated Emission of Radiation from GaAs p-n Junctions, (PDF). Applied Physics Letters, 1(3) (1962)62.
DOI: 10.1063/1.1777371
Google Scholar
[8]
Z. L. Yuan, D. H. Zhang, C. Y. Li, et al. Thermal stability of Cu/alpha-Ta/SiO2/Si structures, Thin Solid Films, 462 (2004) 284-287.
DOI: 10.1016/j.tsf.2004.05.057
Google Scholar
[9]
D. H. Zhang, L. Y. Yang, C. Y. Li et al., Ta/SiCN bilayer barrier for Cu-ultra low k integration, Thin Solid Films, 504(1-2) (2006) 235-238.
DOI: 10.1016/j.tsf.2005.09.130
Google Scholar
[10]
Z. L. Yuan, D. H. Zhang, C. Y. Li, et al. A new method for deposition of cubic Ta diffusion barrier for Cu metallization, Thin Solid Films, 434(1-2) (2003) 126-129.
DOI: 10.1016/s0040-6090(03)00532-7
Google Scholar
[11]
S. W. Loh, D. H. Zhang, C. Y. Li et al. Study of copper diffusion into Ta and TaN barrier materials for MOS devices, Thin Solid Films, 462 (2004) 240-244.
DOI: 10.1016/j.tsf.2004.05.102
Google Scholar
[12]
L. Y. Yang, LY; D. H. Zhang, C. Y. Li et al. Comparative study of Ta, TaN and Ta/TaN bi-layer barriers for Cu-ultra low-k porous polymer integration, Thin Solid Films, 462 (2004) 176-181.
DOI: 10.1016/j.tsf.2004.05.070
Google Scholar
[13]
C. Y. Li, L. He, L; J. J. Wu, et al., Comparative study of ionized metal plasma Ta, TaN and multistacked Ta/TaN structure as diffusion barriers for Cu metallization, Surface Review Letters, 8(5) (2001) 459-464.
DOI: 10.1142/s0218625x01001221
Google Scholar
[14]
L. Y. Yang, LY; D. H. Zhang, C. Y. Li et al, Comparative investigation of TaN and SiCN barrier layer for Cu/ultra low k integration, Thin Solid Films, 504(1-2) (2006) 265-268.
DOI: 10.1016/j.tsf.2005.09.166
Google Scholar
[15]
D. H. Zhang and D. Haneman, Fluorinated Hydrogenated Silicon Films, Thin Solid Films, 186 (1990) L47-L50.
DOI: 10.1016/0040-6090(90)90155-7
Google Scholar
[16]
D. Haneman and D. H. Zhang, Persistent Photoconductivity and Field enhanced Conductivity in Amorphous Silicon Doping-modulated Superlattices, Phys. Rev. B 35 (1987) 2536-2539.
DOI: 10.1103/physrevb.35.2536
Google Scholar
[17]
D. H. Zhang and D. Haneman, Origin of Field-enhanced Conductivity in Amorphous Hydrogenated Silicon, J. Appl. Phys. 62 (1987) 3821-3824.
DOI: 10.1063/1.339224
Google Scholar
[18]
D. H. Zhang and D. Haneman, Persistent Photoconductivity From Thin Layer Amorphous Silicon Doping Modulated Superlattices, J. Appl. Phys, 63 (1988) 1591-1596.
DOI: 10.1063/1.339945
Google Scholar
[19]
D. H. Zhang and D. Haneman, Band Gap and Activation Energy in Amorphous Silicon Doping-modulated Superlattices, Appl. Phys. Lett., 52 (1988) 1392-1394.
DOI: 10.1063/1.99125
Google Scholar
[20]
D. H. Zhang, D. Haneman and Z. R. Shi, Tunable Photoluminescence of Amorphous Silicon Multilayers, J. Appl. Phys, 66 (1989) 4958-4563.
DOI: 10.1063/1.343768
Google Scholar
[21]
Y. Gao, J. Wei, D. H. Zhang, Z.Q. Mo, X. Shi and P. Hing, Effects of nitrogen fraction on the structure of amorphous silicon carbon nitrogen alloys, Thin Solid Films, 377-378 (2000) 562-566.
DOI: 10.1016/s0040-6090(00)01292-x
Google Scholar
[22]
D. H. Zhang, Y. Gao, J. Wei and Z. Q. Mo, Influence of Silane Partial Pressure on the Properties of Amorphous SiCN Films Prepared by ECR-CVD, Thin Solid Films, 377-378 (2000) 607-610.
DOI: 10.1016/s0040-6090(00)01277-3
Google Scholar
[23]
D. H. Zhang, K. Radhakrishnan and S. F. Yoon, The Effect of As/Ga Flux Ratio on Si-doped GaAs Layers Grown by Molecular Beam Epitaxy, Journal of Crystal Growth, 135 (1994) 441-446.
DOI: 10.1016/0022-0248(94)90132-5
Google Scholar
[24]
C. Y. Li and D. H. Zhang, Effects of As cell temperature on Oval defect density and C acceptor concentration of light Si-doped GaAs grown by MBE, J. Crystal Growth, 165 (1996) 15-18.
DOI: 10.1016/0022-0248(96)00159-5
Google Scholar
[25]
D. H. Zhang, K. Radhakrishnan, S. F. Yoon, Characterization of beryllium-doped molecular beam epitaxial grown GaAs by photoluminescence, Journal of Crystal Growth, 148(1-2) (1995) 35-40.
DOI: 10.1016/0022-0248(94)00871-x
Google Scholar
[26]
D. H. Zhang, K. Radhakrishnan, S. F. Yoon and H. M. Li, Be-doped GaAs layers grown at a high As/Ga flux ratio by molecular beam epitaxy, J. Vacuum Sci. & Tech A, 12 (1994) 1120-1123.
DOI: 10.1116/1.579175
Google Scholar
[27]
D. H. Zhang, X. Z. Wang, H. Q. Zheng, S. F. Yoon and C. H. Kam, GaInAsP grown on GaAs substrate by solid source molecular beam epitaxy with a valve phosphorous cracker cell, J. Vac. Sci. & Technol., B18 (2000) 2274-2278.
DOI: 10.1116/1.1305871
Google Scholar
[28]
D. H. Zhang, Metal contacts to n-type AlGaAs grown by solid source molecular beam epitaxy, Material Science and Engineering, B60 (1999) 189-193.
DOI: 10.1016/s0921-5107(99)00076-8
Google Scholar
[29]
W. Shi,D. H. Zhang, H. Q. Zheng, S. F. Yoon, A. Ramam and C. H. Kam, Effects of arsenic beam equivalent pressure on InGaAsP grown by solid source molecular beam epitaxy with continuous white phosphorous production, J. Crys. Growth, 197 (1999).
DOI: 10.1016/s0022-0248(98)00909-9
Google Scholar
[30]
D. H. Zhang, W. Shi, H. Q. Zheng, S. F. Yoon, X. Z. Wang and C. H. Kam, Physical properties of InGaAsP/InP grown by molecular beam epitaxy with a valve phosphorous cracker cell, J. Crys. Growth, 211 (2000) 384-388.
DOI: 10.1016/s0022-0248(99)00806-4
Google Scholar
[31]
D. H. Zhang and C. Y. Li, Carbon incorporation in GaAs/AlGaAs triple quantum wells and its effect on laser performance, Superlattices and Microstructures, 24 (1998) 119-125.
DOI: 10.1006/spmi.1998.0578
Google Scholar
[32]
D. H. Zhang, C.Y. Li, and S. F. Yoon, Influence of substrate misorientation on quality of active region and performance of GaAs/AlGaAs triple quantum well lasers grown by molecular beam epitaxy, J. Crystal Growth, 181 (1-2) (1997) 1-8.
DOI: 10.1016/s0022-0248(97)00248-0
Google Scholar
[33]
D. H. Zhang, C. Y. Li, and S. F. Yoon, Low threshold current vertical-cavity surface emitting lasers grown at a fixed temperature, Microelectronics Engineering, 43-44 (1998) 533-537.
DOI: 10.1016/s0167-9317(98)00215-9
Google Scholar
[34]
Marcin Gębski, Olga Kuzior, Maciej Dems, Michał Wasiak, Y.Y. Xie, Z.J. Xu, Qi Jie Wang, Dao Hua Zhang, and Tomasz Czyszanowski, Transverse mode control in high-contrast grating VCSELs, Optics Express 22(17) (2014) 20954–20963.
DOI: 10.1364/oe.22.020954
Google Scholar
[35]
D. H. Zhang and W. Shi, Dark current and Infrared absorption of p-doped InGaAs/AlGaAs strained quantum wells, Appl. Phys. Lett, 73 (1998) 1095-1097.
DOI: 10.1063/1.122095
Google Scholar
[36]
D. H. Zhang, W. Shi, N. Li and Junhao Chu, Compressively strained InGaAs/AlGaAs quantum well infrared photodetectors, J. Appl. Phys, 92 (2002) 6287-6290.
DOI: 10.1063/1.1516262
Google Scholar
[37]
D. H. Zhang, W. Shi, P. H. Zhang, S. F. Yoon and X. Shi, Effects of Be-doping on the absorption of InGaAs/AlGaAs strained quantum wells for infrared photodetectors grown by molecular beam epitaxy, Appl. Phys. Lett, 74 (1999) 1570-1572.
DOI: 10.1063/1.123619
Google Scholar
[38]
W. Liu,D. H. Zhang, Z. M. Huang and W. J. Fan, Theoretical study of quantum well infrared photodetectors with asymmetric well and barriers for broadband photodetection, J. Appl. Phys., 101 (2007) 33114 (1-7).
DOI: 10.1063/1.2434938
Google Scholar
[39]
D. H. Zhang, W. Liu, L. Sun, W.J. Fan, S.F. Yoon and S.Z. Wang and H.C. Liu, Transverse electric dominant Intersubband absorption in Si-doped GaInAsN/GaAs quantum wells, J. Appl. Phys., 99 (2006) 043514 (1-4).
DOI: 10.1063/1.2172719
Google Scholar
[40]
W. Liu, D. H. Zhang, W. J. Fan, X. Y. Hou and Z. M. Jiang, Intersubband transitions in InGaAsN/GaAs quantum wells, J. Appl. Phys., 104 (2008) 053119.
DOI: 10.1063/1.2976335
Google Scholar
[41]
D. H. Zhang, W. Liu, Y. Wang, X. Z. Chen, J. H. Li, Z. M. Huang and Sam Zhang, InSbN alloys fabricated by two-step ion implantation for infrared photodetection, Applied Physics Letters, 93 (2008) 131107.
DOI: 10.1063/1.2990756
Google Scholar
[42]
X. Z. Chen, D. H. Zhang, W. Liu, Y. Wang, J.H. Li, A.T.S. Wee and A. Ramam, InSbN based p-n junctions for infrared photodetection, Electronics Letters, 46(11) (2010) 787-788.
DOI: 10.1049/el.2010.0713
Google Scholar
[43]
Changchun Yan, Dao Hua Zhang, Yuan Zhang, Dongdong Li, and M. A. Fiddy, Metal-dielectric composite metamaterials for beam splitting and deep sub-wavelength resolution in the far field for visible wavelengths, Optics Express 18 (2010) 14794.
DOI: 10.1364/oe.18.014794
Google Scholar
[44]
Yueke Wang, Dao Hua Zhang, Jun Wang, Xuefeng Yang, Dongdong Li and Zhengji Xu, Waveguide devices with homogeneouscomplementary media, Optics Lett. 36 (2011) 3855-3857.
Google Scholar
[45]
Jun Wang, Fei Qin, Dao Hua Zhang, Dongdong Li, Yueke Wang, Xiaonan Shen, Ting Yu and Jinghua Teng, Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate, Applied Physics Letters, 102 (2013) 061103.
DOI: 10.1063/1.4791581
Google Scholar
[46]
D. D. Li, D. H. Zhang, C. C. Yan and Y. K. Wang, Two-dimensional sub-wavelength imaging from a hemispherical hyperlens, Appl. Opt. 50(31) (2011) G86-G90.
DOI: 10.1364/ao.50.000g86
Google Scholar
[47]
Zhengji Xu, Landobasa Y. M. Tobing, Yiyang Xie, Jinchao Tong, Peinan Ni, Shupeng Qiu, Ting Yu, and Dao Hua Zhang, Aluminum based structures for manipulating short visible wavelength in-plane surface plasmonpolariton propagation, Opt. Express 23(17) (2015).
DOI: 10.1364/oe.23.022883
Google Scholar
[48]
Changchun Yan, Dao Hua Zhang and Dongdong Li, Spherical metallic nanoparticle arrays for super-resolution imaging, J. Appl. Phys. 109, 063105, (2011).
DOI: 10.1063/1.3553875
Google Scholar
[49]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters 84 (18) 418(2000) 4–7.
DOI: 10.1103/physrevlett.84.4184
Google Scholar
[50]
L. Y. M. Tobing, L. Tjahjana and D. H. Zhang, Large contrast enhancement by sonication assisted cold development process for low dose and ultrahigh resolution patterning on ZEP520A positive tone resist, Journal of Vacuum Science and Technology, B 30 (2012).
DOI: 10.1116/1.4739053
Google Scholar
[51]
L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Direct patterning of high density sub-15-nm gold dot arrays using ultrahigh contrast electron beam lithography process on positive tone resist, Nanotechnology 24 (2013) 075303.
DOI: 10.1088/0957-4484/24/7/075303
Google Scholar
[52]
Landobasa Y. M. Tobing, Liliana Tjahjana, Dao Hua Zhang, Sub-10-nm size and sub-40-nm pitch metal dot patterning for low-cost bit patterned media application, IEEE Transaction on Nanotechnology, Vol. 13(3) (2014) 496-501.
DOI: 10.1109/tnano.2014.2307574
Google Scholar
[53]
Landobasa Y. M. Tobing, Liliana Tjahjana, Dao Hua Zhang, Qing Zhang, Qihua Xiong, Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform, Scientific Reports, 3 (2013).
DOI: 10.1038/srep02437
Google Scholar
[54]
Landobasa Y. M. Tobing, Liliana Tjahjana, Dao Hua Zhang, Qing Zhang and Qihua Xiong, Sub-100-nm Sized Silver Split Ring Resonator Metamaterials with Fundamental Magnetic Resonance in the Middle Visible Spectrum, Advanced Optical Materials, 2(3) (2014).
DOI: 10.1002/adom.201300456
Google Scholar
[55]
Landobasa Y. M. Tobing1, Yu Luo1, Kay Soon Low1, Dawei Zhang2, Dao Hua Zhang, Observation of the kinetic inductance limitation for the fundamental magnetic resonance in ultrasmall gold v-shape split ring resonators", Submitted to Advanced Optical Materials.
DOI: 10.1002/adom.201500739
Google Scholar
[56]
Landobasa Y. M. Tobing and D. H. Zhang, Preferential Excitation of Hybrid Magnetic-Electric Mode as a Limiting-Mechanism for the Achievable Fundamental Magnetic Resonance in Planar Aluminum Nanostructures, Advanced Materials, 4 DEC 2015DOI: 10. 1002/adma. 201504061.
DOI: 10.1002/adma.201504061
Google Scholar
[57]
Koichi Okamoto, Isamu Niki, Alexander Shvartser, Yukio Narukawa, Takashi Mukai & Axel Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nature Materials3 (2004) 601 – 605.
DOI: 10.1038/nmat1198
Google Scholar
[58]
Pierre Beriniand Israel De Leon, Surface plasmon–polariton amplifiers and lasers, Nature Photonics, Volume: 6 (2012)Pages: 16–24. Year published.
DOI: 10.1038/nphoton.2011.285
Google Scholar
[59]
Chun-Chieh Chang, Yagya D. Sharma, Yong-Sung Kim†, Jim A. Bur†, Rajeev V. Shenoi, Sanjay Krishna, Danhong Huang§ and Shawn-Yu Lin, A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots, Nano Lett., 10 (5) (2010) 1704–1709.
DOI: 10.1021/nl100081j
Google Scholar