[1]
A. Veres, J.G. Noudem, O. Perez, S. Fourrez, G. Bailleul, Manganese based spinel - like ceramics with NTC - type thermistor behaviour, Solid State Ionics 178 (2007) 423-428.
DOI: 10.1016/j.ssi.2007.01.028
Google Scholar
[2]
K. Park, J.K. Lee, J.G. Kim, S. Nahm, Improvement in the electrical stability of Mn-Ni-Co-O NTC thermistors by substituting Cr2O3 for Co3O4, J. Alloys Compd. 437 (2007) 211-214.
DOI: 10.1016/j.jallcom.2006.07.070
Google Scholar
[3]
M. Vakiv, O. Shpotyuk, O. Mrooz, I. Hadzaman, Controlled thermistor effect in the system CuxNi1-x-yCo2yMn2-yO4, J. Eur. Ceram. Soc. 21 (2001) 1783-1785.
DOI: 10.1016/s0955-2219(01)00115-7
Google Scholar
[4]
S. Fritsch, J. Sarrias, M. Brieu, J.J. Couderc, J.L. Baudour, E. Snoeck, A. Rousset, Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors, Solid State Ionics 109 (1998).
DOI: 10.1016/s0167-2738(98)00080-0
Google Scholar
[5]
K. Park, Fabrication and electrical properties of Mn-Ni-Co-Cu-Si oxides negative temperature coefficient thermistors, J. Am. Ceram. Soc. 88 (2005) 862-866.
DOI: 10.1111/j.1551-2916.2004.00170.x
Google Scholar
[6]
M.N. Muralidharan, P.R. Rohini, E.K. Sunny, K.R. Dayas, A. Seema, Effect of Cu and Fe addition on electrical properties of Ni-Mn-Co-O NTC thermistor compositions, Ceram. Int. 38 (2012) 6481-6486.
DOI: 10.1016/j.ceramint.2012.05.025
Google Scholar
[7]
S. Liang, X. Zhang, M. Luo, Y. Bai, J. Yang, Study of structural and electrical properties of Ni-Mn-Mg-AI-O NTC thermistor thick film prepared by SAPS method, Electron. Compon. Mater. 32 (2013) 26-29.
Google Scholar
[8]
K. Park, I.H. Han, Effect of Al2O3 addition on the microstructure and electrical properties of (Mn0. 37Ni0. 3Co0. 33-xAlx) O4 (0 <= x <= 0. 03) NTC thermistors, Mater. Sci. Eng. B-Solid. 119 (2005) 55-60.
DOI: 10.1016/j.mseb.2005.01.018
Google Scholar
[9]
K. Park, S.J. Yun, Effect Of SiO2 addition on the electrical stability of (Mn2. 1-xNi0. 9Six)O4 (0 <= x <= 0. 18) negative temperature coefficient thermistors, Mater. Lett. 58 (2004) 933-937.
DOI: 10.1016/j.matlet.2003.07.039
Google Scholar
[10]
K. Park, Improvement in electrical stability by addition of SiO2 in (Mn1. 2Ni0. 78Co0. 87-xCu0. 15Six)O4 negative temperature coefficient thermistors, Scripta Mater. 50 (2004) 551-554.
DOI: 10.1016/j.scriptamat.2003.10.011
Google Scholar
[11]
S.S. More, R.H. Kadam, A.B. Kadam, A.R. Shite, D.R. Mane, K.M. Jadhav, Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4, J. Alloys Compd. 502 (2010) 477-479.
DOI: 10.1016/j.jallcom.2010.04.201
Google Scholar
[12]
L. Wang, J.B. Lu, J. Li, J. Hua, M. Liu, Y.M. Zhang, H.B. Li, Cation distribution and magnetic properties of CoAlxFe2−xO4/SiO2 nanocomposites, Phys. B: Condens. Matter. 421 (2013) 8-12.
DOI: 10.1016/j.physb.2013.04.020
Google Scholar
[13]
K. Park, J.K. Lee, S.J. Kima, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, The effect of Zn on the microstructure and electrical properties of Mn1. 17-xNi0. 93Co0. 9ZnxO4 (0 <= x <= 0. 075) NTC thermistors, J. Alloys Compd. 467 (2009) 310-316.
DOI: 10.1016/j.jallcom.2007.11.105
Google Scholar
[14]
R. Schmidt, A. Basu, A.W. Brinkman, Small polaron hopping in spinel manganates, Phys. Rev. B. 72 (2005) 115101(1)-11501(9).
DOI: 10.1103/physrevb.72.115101
Google Scholar