Photoluminescence Properties of the Magnetoplumbite-Type BaMg6Ti6O19:Mn4+ and Spinel-Type Mg2TiO4:Mn4+

Article Preview

Abstract:

Mn4+-doped magnetoplumbite-type BaMg6Ti6O19 and spinel-type Mg2TiO4 red phosphors were synthesized by a solid-state reaction. BaMg6Ti6O19:Mn4+ and Mg2TiO4:Mn4+ were formed as main phase above 1200 oC. Although the emission peak of BaMg6Ti6O19:Mn4+ and Mg2TiO4:Mn4+ were almost the same, the excitation peak of BaMg6Ti6O19:Mn4+ and Mg2TiO4:Mn4+ were different. The 4A24T1 transition peak of Mg2TiO4:Mn4+ shifted to a shorter wavelength side than that of BaMg6Ti6O19:Mn4+ and 4A24T2 shifted to a longer wavelength side. The crystal field splitting energy of Mg2TiO4:Mn4+ was lower than that of BaMg6Ti6O19:Mn4+. By the additional of R block, the racah parameter B increased and C decreased. Although the increase of B causes a blue-shift of the emission wavelength and the decrease of C causes a red-shift of the emission wavelength, PL emission wavelength was little different due to the influence of both racah parameter. Thus, it was suggested that the existence of R block results in a difference of photoluminescence properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Nat. Photonics 3 (2009) 180–182.

Google Scholar

[2] E.F. Schubert, J.K. Kim, Science 308 (2005) 1274–1278.

Google Scholar

[3] T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga, T. Hase, J. Lumin. 114 (2005) 207–212.

Google Scholar

[4] L. Meng, L. Liang, Y. Wen, J. Mater. Sci. Mater. Electron. 25 (2014) 2676–2681.

Google Scholar

[5] R. Cao, K.N. Sharafudeen, J. Qiu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 117C (2013) 402–405.

Google Scholar

[6] R. Cao, M. -Y. Peng, E. Song, J. Qiu, ECS J. Solid State Sci. Technol. 1 (2012) R123–R126.

Google Scholar

[7] B.D. McNicol, G.T. Pott, J. Lumin. 6 (1973) 320–334.

Google Scholar

[8] T. Sasaki, J. Fukushima, Y. Hayashi, H. Takizawa, Chem. Lett. 43 (2014) 1061–1063.

Google Scholar

[9] R. Dittmann, D. Hahn, Zeitschrift Für Phys. 207 (1967) 484–499.

Google Scholar

[10] T. Ye, S. Li, X. Wu, M. Xu, X. Wei, K. Wang, H. Bao, J. Wang, J. Chen, J. Mater. Chem. C 1 (2013) 4327.

Google Scholar

[11] Y. Takeda, H. Kato, M. Kobayashi, H. Kobayashi, M. Kakihana, Chem. Lett. 44 (2015) 1541–1543.

Google Scholar

[12] L. Thorington, J. Opt. Soc. Am. 40 (1950) 579.

Google Scholar

[13] Q. Shao, H. Lin, J. Hu, Y. Dong, J. Jiang, J. Alloys Compd. 552 (2013) 370–375.

Google Scholar

[14] S. Okamoto, H. Yamamoto, J. Electrochem. Soc. 157 (2010) J59.

Google Scholar

[15] K. Momma, F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272–1276.

Google Scholar

[16] S. Jayanthi, T.R.N. Kutty, Mater. Lett. 60 (2006) 796–800.

Google Scholar

[17] B. Bergstein, G.F. Imbusch, Optical Spectroscopy of Inorganic Solid, Clarendon Press, Oxford, (1989).

Google Scholar

[18] M.G. Brik, S.J. Camardello, A.M. Srivastava, N.M. Avram, A. Suchocki, ECS J. Solid State Sci. Technol. 5 (2016) R3067–R3077.

DOI: 10.1149/2.0091601jss

Google Scholar