The Mechanism of Water-Soluble Polymer Аdditives and Parameters of the Pulse Electrolysis Effect on the Size Distribution of the Electrolytic Copper Powder

Article Preview

Abstract:

The principles of pulse electrolysis modes selection and their effect on the size distribution of the powder electrolytic copper in electrolyte with additions of water-soluble polymers, polyvinylpyrrolidone (PVP) and polyacrylamide (PAA) are considered in the paper. The research conducted with use of chronopotentiometry and potential transients as well as a simulation model of the electrocrystallisation process showed that the values of pulse duration were greater than the transient time of electroactive species and the pause duration equal to the linear part of potential transient was optimum to obtain a powder with a predominant fraction of nanoscale particles . PVP and PAA additives help to reduce the average particle size in the nanoscale fraction copper powder particles to 25-40 nm. Selected current pulse mode effect corresponds to the reduction of the emergence of new centers of crystallization probability and the adatoms on the surface of the cathode movement probability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

636-641

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.Y. Yazici, H. Deveci, Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4–CuSO4–NaCl solutions, Hydrometallurgy. 139 (2013) 30-38.

DOI: 10.1016/j.hydromet.2013.06.018

Google Scholar

[2] Y. Chu, M. Chen, Sh. Chen, B. Wang, K. Fu, H. Chen, Micro-copper powders recovered from waste printed circuit boards by electrolysis, Hydrometallurgy. 156 (2015)152-157.

DOI: 10.1016/j.hydromet.2015.06.006

Google Scholar

[3] H. Wei, D. Xue-chen, Z. Lei, Characterization of ultrafine copper powder prepared by novel electrodeposition method, J. Cent. S. Univ. Technol. 16 (2009) 708-712.

DOI: 10.1007/s11771-009-0117-0

Google Scholar

[4] R. Kh. Nekouei, F. Rashchi, Ar. Ravanbakhsh, Copper nanopowder synthesis by electrolysis method in nitrate and sulfate solutions, Powder Technology. 250 (2013) 91-96.

DOI: 10.1016/j.powtec.2013.10.012

Google Scholar

[5] I. Haas, S. Shanmugam, A. Gedanken, Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly (N-vinylpyrrolidone), J. Phys. Chem. B. 110 (2006) 16947-16952.

DOI: 10.1021/jp064216k

Google Scholar

[6] M.G. Pavlović, J.L. Pavlović, I.D. Doroslovački, N.D. Nikolić, The effect of benzoic acid on the corrosion and stabilisation of electrodeposited copper powder, Hydrometallurgy. 73 (2004) 155-162.

DOI: 10.1016/j.hydromet.2003.08.005

Google Scholar

[7] M.S. Lipkin, V.M. Lipkin, A.A. Naumenko, A.S. Misharev, F.R. Tulaeva, E.A. Rybalko, N.A. Lytkin, V.G. Shishka, A.N. Bogdanchenko, Synthesis of Metal Nano-Powders in Nonstationary Electrolysis, in: Proceeding of ECS Meeting Abstracts Cancun Mexico: Emerging nanomaterials and devices. (2014).

DOI: 10.1149/ma2014-02/38/1891

Google Scholar

[8] G. Orhan, G. Hapci, Effect of electrolysis parameters on the morphologies of copper powder obtained in a rotating cylinder electrode cell, Powder Technol. 201 (2010) 57-63.

DOI: 10.1016/j.powtec.2010.03.003

Google Scholar

[9] D.R. Gabe, G.D. Wilcox, J. Gonzalez-Garcia, F.C. Walsh, The rotating cylinder electrode: its continued development and application, Journal of Applied Electrochemistry. 28 (1998) 759-780.

DOI: 10.1023/a:1003464415930

Google Scholar

[10] V.M. Lipkin, Y.M. Berezhnoi, M.S. Lipkin, Effect of substrate nature and electrolysis modes on ultramicron and nanosized electrolytic powders formation regularities, Materials Science Forum. 843 (2016) 22-27.

DOI: 10.4028/www.scientific.net/msf.843.22

Google Scholar

[11] K.I. Popov, S.B. Krstić, M.Č. Obradović, M.G. Pavlović, Lj.J. Pavlović, E.R. Ivanović, The effect of the particle shape and structure on the flowability of electrolytic copper powder, III, A model of the surface of a representative particle of flowing copper powder electrodeposited by reversing current, Journal of the Serbian Chemical Society. 69 (2004).

DOI: 10.4028/www.scientific.net/msf.453-454.393

Google Scholar

[12] K.I. Popov, S.B. Krstić, M.G. Pavlović, The critical apparent density for the free flow of copper powder, Journal of the Serbian Chemical Society. 68 (2003) 511-513.

Google Scholar

[13] R.K. Nekouei, F. Rashchi , Ah.A. Amadeh, Using design of experiments in synthesis of ultra-fine copper particles by electrolysis, Powder Technology. 237 (2013) 165-171.

DOI: 10.1016/j.powtec.2013.01.032

Google Scholar

[14] M. Pavlovic, Lj. Pavlovic, V. Maksimovic, N. Nikolic, K. Popov, Characterization and morphology of copper powder particles as a function of different electrolytic regimes, International Journal of Electrochemistry Science. 5 (2010) 1862-1878.

DOI: 10.1016/s1452-3981(23)15390-9

Google Scholar

[15] S. Jafar, Effects of new additives (lanolin) on the electro-deposition of copper powder, Engineering and Technology Journal. 27 (2009) 2308-2321.

Google Scholar

[16] H. Dong, G. Shao, Study of centrifugal high-speed chromium plating, Electroplat Finish. 1 (2004) 31-32. (in Chinese).

Google Scholar

[17] M. Wang, Z. Wang, Z. Guo, Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism, Trans. Nonferous Met. Soc. Chine. 20 (2010) 1154-1160.

DOI: 10.1016/s1003-6326(09)60271-5

Google Scholar

[18] R.K. Nekouie, F. Rashchi, N.N. Joda, Effect of organic additives on synthesis of copper nano powders by pulsing electrolysis, Powder. Technology. 237 (2013) 554-561.

DOI: 10.1016/j.powtec.2012.12.046

Google Scholar

[19] J. Elplancke, M. Sun, T.J. O'Keefe, R. Winand, Nucleation of electrodeposited copper on anodized titanium, Hydrometallurgy. 23 (1989) 47-66.

DOI: 10.1016/0304-386x(89)90017-0

Google Scholar

[20] W. Yohannes, S.V. Belenov, V.E. Guterman, L.M. Skibina, V.A. Volotchaev, N.V. Lyanguzov, Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid, Journal of Applied Electrochemistry. 6 (2015).

DOI: 10.1007/s10800-015-0820-5

Google Scholar

[21] K. Popov, T. Kostic, N. Nikolic, E. Strojilkovic, M. Pavlovic, A new approach to metal electrodeposition at a periodically changing rate part I, The reversing overpotential method, J. Electroanal. Chem. 464 (1999) 245-251.

Google Scholar

[22] M. Quinet, F. Lallemand, L. Ricq, J.Y. Hihn, P. Delobelle, C. Arnould, Z. Mekhalif, Influence of organic additives on the initial stages of copper electrodeposition on polycrystalline platinum, Electrochimica Acta. 54 (2009) 1529-1536.

DOI: 10.1016/j.electacta.2008.09.052

Google Scholar

[23] V. Saez, T.J. Mason, Sonoelectrochemical synthesis of nano particles, Molecules. 14 (2009) 4284-4299.

Google Scholar

[24] A.S. Kuzharov, M.S. Lipkin, A.A. Kuzharov, V.M. Lipkin, K. Nguen, V.G. Shishka, E.A. Rybalko, N.A. Lytkin, A.S. Misharev, F.R. Tulaeva, A.I. Gaidar, Green tribology: Disposal and recycling of waste Ni–Cd batteries to produce functional tribological materials, Journal of Friction and Wear. 36 (2015).

DOI: 10.3103/s1068366615040078

Google Scholar

[25] L.G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley, 1992, pp.28-48.

Google Scholar

[26] A.V. Sedov, M.S. Lipkin, S.M. Lipkin, D.A. Onyshko, N.A. Lytkin, N.V. Rarova, Nondestructive carbon content express-control in steels and alloys, in: Proceeding of International Conference on Physical Mesomechanics of Multilevel Systems 2014. 1623 (2014).

DOI: 10.1063/1.4901498

Google Scholar

[27] Y.Y. Gerasimenko, S.V. Kucherenko, S.M. Lipkin, M.S. Lipkin, Potential step study of intercalation processes, in: Proceeding of ECS Transactions. 14 (2013) 89-94.

DOI: 10.1149/05814.0089ecst

Google Scholar