Impedance Spectroscopic Inspection Toward Sensitivity Enhancement of Ag-Doped WO3 Nanofiber-Based Carbon Monoxide Gas Sensor

Article Preview

Abstract:

This work reports the impedance analysis and carbon monoxide gas sensing response of tungsten oxide (WO3) nanofibers with silver (Ag) nanoparticle doping. The Ag-doped WO3 nanofibers were prepared by an electrospinning technique. The impedance spectroscopic measurements of undoped and Ag-doped WO3 nanofibers were performed to study the contribution of electrical parameters involved in the electron transport. The impedance modeling obtained from the fitted Nyquist plot shows that the RC components attributed to Ag-WO3 interface are introduced to the system upon Ag addition. Carbon monoxide (CO) gas detection was carried out by resistance measurement using a DC method. The sensitivity of Ag-doped WO3 nanofibers is found to be greater than that of the undoped sample. The improved sensitivity is derived from the high interface resistance between Ag and WO3 grains. The contribution of Ag dopants is conceived to induce electronic structure alteration of the sensor material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-234

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Barsan and U. Weimar: J. Electroceram. Vol. 7 (2001), p.143.

Google Scholar

[2] G.F. Fine, L.M. Cavanagh, A. Afonja and R. Binions: Sensors Vol. 10 (2010), p.5469.

Google Scholar

[3] L.G. Teoh, I.M. Hung, J. Shieh, W.H. Lai and M.H. Hon: Electrochem. Solid-State Lett. Vol. 6 (2003), p. G108.

Google Scholar

[4] E. Llobet, G. Molas, P. Molinàs, J. Calderer, X. Vilanova, J. Brezmes, J.E. Sueiras and X. Correig: J. Electrochem. Soc. Vol. 147 (2000), p.776.

DOI: 10.1149/1.1393270

Google Scholar

[5] R. Ionescu, A. Hoel, C. G. Granqvist, E. Llobet and P. Heszler: Sens. Actuators, B Vol. 104 (2005), p.132.

Google Scholar

[6] K. Aguir, C. Lemire and D.B.B. Lollman: Sens. Actuators, B Vol. 84 (2002), p.1.

Google Scholar

[7] M. Hübnera, C.E. Simionb, A. Haenscha, N. Barsana and U. Weimar: Sens. Actuators, B Vol. 151 (2010), p.103.

Google Scholar

[8] I.D. Kim and A. Rothschild: Polym. Adv. Technol. Vol. 22 (2011), p.318.

Google Scholar

[9] J. -Y. Leng, X. -J. Xu, N. Lv, H. -T. Fan and T. Zhang: J. Colloid Interface Sci. Vol. 356 (2011), p.54.

Google Scholar

[10] G. Wang, Y. Ji, X. Huang, X. Yang, P.I. Gouma and M. Dudley: J. Phys. Chem. B Vol. 110 (2006), p.23777.

Google Scholar

[11] T. -A. Nguyen, S. Park, J.B. Kim, T.K. Kim, G.H. Seong, J. Choo and Y.S. Kim: Sens. Actuators, B Vol. 160 (2011), p.549.

Google Scholar

[12] N. Yamazoe, G. Sakai and K. Shimanoe: Catal. Surv. Asia Vol. 7 (2003), p.63.

Google Scholar

[13] J. Ding, T.J. McAvoy, R.E. Cavicchi and S. Semancik: Sens. Actuators, B Vol. 77 (2001), p.597.

Google Scholar

[14] H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, Y. Wang and S. Wu: Sens. Actuators, B Vol. 134 (2008), p.133.

Google Scholar

[15] S.M. Sze, in: Semiconductor Devices: Physics and Technology, Wiley, New York (2001).

Google Scholar

[16] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura and N. Yamazoe: J. Electrochem. Soc. Vol. 141 (1994), p.2207.

DOI: 10.1149/1.2055088

Google Scholar

[17] A. Labidi, C. Lambert-Mauriat, C. Jacolin, M. Bendahan, M. Maaref and K. Aguir: Sens. Actuators, B Vol. 119 (2006), p.374.

DOI: 10.1016/j.snb.2005.12.036

Google Scholar

[18] T. Samerjai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant: J. Nanosci. Nanotechnol. Vol. 14 (2014), p.7763.

DOI: 10.1166/jnn.2014.9429

Google Scholar

[19] H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong and F.R. Zhu: Sens. Actuators, B Vol. 115 (2006), p.247.

Google Scholar