[1]
K. Shantha, K.B.R. Varma, Frequency dependence of the dielectric properties of ferroelectric Bi2VO5. 5 ceramics, Solid State Ionics 99 (1997) 225-231.
DOI: 10.1016/s0167-2738(97)00254-3
Google Scholar
[2]
A. Cherrak, R. Hubaut, Y. Barbaux, G. Mairesse, Catalytic properties of bismuth vanadates based catalysts in oxidative coupling of methane and oxidative dehydrogenation of propane, Catal. Lett. 15 (1992) 377-383.
DOI: 10.1007/bf00769161
Google Scholar
[3]
P.B. Avakyan, M.D. Nersesyan, A.G. Merzhanov, New materials for electronic engineering, Am. Ceram. Soc. Bull. 75(2) (1996) 50-55.
Google Scholar
[4]
P. Shuk, H. -D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3, Solid State Ionics 89 (1996) 179-196.
DOI: 10.1016/0167-2738(96)00348-7
Google Scholar
[5]
M.E.A. Dompablo, F.G. Alvarado, E. Morán, Bi4V2O11 and related compounds as positive electrode materials for lithium rechargeable batteries, Solid State Ionics 91 (1996) 273-278.
DOI: 10.1016/s0167-2738(96)83029-3
Google Scholar
[6]
R.W. Siegel, Creating nanophase materials, Sci. Am. 275 (1996) 42-47.
Google Scholar
[7]
K. Shantha, K.B.R. Varma, Preparation and characterization of nanocrystalline powders of bismuth vanadate, Mater. Sci. Eng., B 56 (1999) 66-75.
DOI: 10.1016/s0921-5107(99)00021-5
Google Scholar
[8]
A.K. Bhattacharya, K. K Mallick, P.A. Thomas, Low temperature synthesis of a bismuth vanadium oxide isomorphous with γ-Bi4V2O11, Solid State Commun. 91(5) (1994) 357-360.
DOI: 10.1016/0038-1098(94)90633-5
Google Scholar
[9]
J.W. Pell, J.Y. Ying, H.C. Loye, Sol-gel synthesis of α-Bi2VO5. 5 using a soluble bismuth precursor, Mater. Lett. 25 (1995) 157-160.
DOI: 10.1016/0167-577x(95)00163-8
Google Scholar
[10]
B. Vaidyanathan, M. Ganguli, K.J. Rao, Fast solid state synthesis of metal vanadates and chalcogenides using microwave irradiation, J. Mater. Res. Bull. 30 (1995) 1173-1177.
DOI: 10.1016/0025-5408(95)00099-2
Google Scholar
[11]
Y. Zhang, G. Li, X. Yang, H. Yang, Z. Lu, R. Chen, Monoclinic BiVO4 micro-/nanostructures: microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities, J. Alloy. Compd. 551 (2013) 544-550.
DOI: 10.1016/j.jallcom.2012.11.017
Google Scholar
[12]
Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File Card No. 00-042-0135, Swarthmore, PA.
Google Scholar
[13]
N. Kumari, S.B. Krupanidhi, K.B.R. Varma, Structural and electrical characterization of Bi2VO5. 5/Bi4Ti3O12 bilayer thin films deposited by pulsed laser ablation technique, Nat. Sci. 2 (2010) 1073-1078.
DOI: 10.4236/ns.2010.210133
Google Scholar
[14]
B. Yan, X.Q. Su, Chemical co-precipitation synthesis of luminescent BixY1-xVO4: RE (RE = Eu3+, Dy3+, Er3+) phosphors from hybrid precursors, J. Non-Cryst. Solids 352 (2006) 3275- 3279.
DOI: 10.1016/j.jnoncrysol.2006.05.023
Google Scholar
[15]
M. Alga, A. Ammar, R. Essalim, B. Tanouti, F. Mauvy, R. Decourt, Synthesis, sintering and electrical properties of P-doped Bi4V2O11, ceramics Solid State Sci. 7 (2005) 1173-1179.
DOI: 10.1016/j.solidstatesciences.2005.06.011
Google Scholar
[16]
P. Jansanthea, P. Pookmanee, S. Phaisansuthichol, S. Satienperakul, S. Sangsrichan, R. Puntharod, S. Phanichphant, BiVO4 powder synthesized via the solvothermal method, Adv. Mater. Res. 931-932 (2014) 157-161.
DOI: 10.4028/www.scientific.net/amr.931-932.157
Google Scholar
[17]
R. Kaur, S. Thakur, K. Singh, Effect of two different sites substitution on structural and optical properties of Bi4V2O11-δ, Physica B 440 (2014) 78-82.
DOI: 10.1016/j.physb.2014.01.032
Google Scholar