The Improvement in Mechanical and Thermal Properties of Biodegradable Poly(Butylene Succinate) (PBS) Nanocomposites with Low Loadings of Graphene Oxide (XGO)

Article Preview

Abstract:

This research aims to study the physical, mechanical and thermal properties of poly (butylene succinate)/graphene oxide (PBS/XGO) nanocomposites. The polymer nanocomposites were successfully prepared by solution processing in conjunction with compression molding at various contents of XGO from 0-1.0 wt%. The structure, tensile properties and thermal stability of materials have been investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical test, and thermogravimetric analysis. The results revealed that PBS and XGO could mix with each other homogeneously, and uniform dispersion of XGO in the PBS matrix occurred when the filler content was less than 1.0 wt%. Young′s modulus and degradation temperature (Td) of biopolymer were greatly improved by the addition of a small amount of XGO (1.0 wt%). The nanocomposites have potential application as packing materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-241

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.P. La Mantia and M. Morreale: Compos. Part A Appl. Sci. Manuf. Vol. 42 (2011), p.579.

Google Scholar

[2] B.W. Chieng, N.A. Ibrahim, W.M.Z. Wan Yunus, M.Z. Hussein and V.S.G. Silverajah: Int. J. Mol. Sci. Vol. 13 (2012), p.10920.

Google Scholar

[3] S.O. Han, H.J. Ahn and D. Cho: Compos. Part B Eng. Vol. 41 (2010), p.491.

Google Scholar

[4] S.M. Lee, D. Cho, W.H. Park, S.G. Lee, S.O. Han and L.T. Drzal: Compos. Sci. Technol. Vol. 65 (2005), p.647.

Google Scholar

[5] C. Wan and B. Chen: J. Appl. Polym. Sci. Vol. 127 (2013), p.5094.

Google Scholar

[6] I. Tantis, G.C. Psarras and D. Tasis: eXPRESS Polym. Lett. Vol. 6 (2012), p.283.

Google Scholar

[7] M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Łapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu and E. Borowiak-Palen: Colloids Surf. B Biointerfaces Vol. 89 (2012), p.79.

DOI: 10.1016/j.colsurfb.2011.08.026

Google Scholar

[8] X. Wang, H. Yang, L. Song, Y. Hu, W. Xing and H. Lu: Compos. Sci. Technol. Vol. 72 (2011), p.1.

Google Scholar

[9] A. Buasri, J. Patwiwattanasiri, N. Adisaisakunchai, A. Kemngen, V. Loryuenyong: Optoelectron. Adv. Mater. - Rapid Comm. Vol. 9 (2015), p.507.

Google Scholar

[10] J. Wu, X. Shen, L. Jiang, K. Wang and K. Chen: Appl. Surf. Sci. Vol. 256 (2010), p.2826.

Google Scholar

[11] V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo and A. Buasri: Adv. Mater. Sci. Eng. Vol. 2013 (2013), Article ID 923403.

Google Scholar

[12] S. Thakur and N. Karak: Carbon Vol. 50 (2012), p.5331.

Google Scholar

[13] M.E. Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi and A. Qaiss: Appl. Surf. Sci. Vol. 258 (2012), p.7668.

DOI: 10.1016/j.apsusc.2012.04.118

Google Scholar

[14] B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew and Y. Hu: Chem. Eng. J. Vol. 237 (2014), p.411.

Google Scholar

[15] A. Buasri, N. Chaiyut, V. Loryuenyong, N. Jaritkaun, T. Yavilas and N. Yoorengdech: Optoelectron. Adv. Mater. - Rapid Comm. Vol. 7 (2013), p.938.

Google Scholar

[16] Y. Zhang, J.E. Mark, Y. Zhu, R.S. Ruoff and D.W. Schaefer: Polymer Vol. 55 (2014), p.5389.

Google Scholar

[17] A. Buasri, N. Chaiyut, V. Loryuenyong, P. Machuen, P. Chalitapanukul and S. Jirarattanawanna: J. Optoelectron. Adv. Mater. Vol. 16 (2014), p.939.

Google Scholar

[18] Y. Zhao, J. Qiu, H. Feng, M. Zhang, L. Lei and X. Wu: Chem. Eng. J. Vol. 173 (2011), p.659.

Google Scholar