Characterization of Intergranular Corrosion Defects in a 2024 T351 Aluminium Alloy

Article Preview

Abstract:

In the 2xxx series alloys, intergranular corrosion is generally related to the strong reactivity of copper-rich intergranular precipitates leading to a copper enrichment of these particles. While the nature of the oxides formed inside the intergranular corrosion defects was assumed to strongly influence the intergranular corrosion propagation rate, it was not clearly identified due to the thickness of the oxide layer formed which required to use high resolution analytical techniques. The present work aims to characterize the intergranular corrosion defects formed for a 2024-T351 aluminum alloy after a 24 hours continuous immersion in a 1 M NaCl solution and compares the results to literature data concerning the oxide layers formed on copper-rich model alloys. A combination of focus ion beam (FIB) technique, transmission electron microscopy (TEM) observations and energy dispersive X-Ray spectroscopy (EDX) analyses was used to accurately characterize both the morphology and chemical composition of the intergranular corrosion defects. Results evidenced the dissolution of intergranular copper-rich particles, the formation of a 10-200 nm-thin metallic copper-rich layer at the oxide/metal interface and the incorporation of copper inside the amorphous alumina oxide film leading to the formation of structural defects of the oxide film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

444-449

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Committee on Aging of U.S. Air Force Aircraft, Commission on Engineering and Technical Systems, National Materials Advisory Board, Division on Engineering and Physical Sciences, National Research Council. Aging of U.S. Air Force Aircraft: Final Report. Washington: National Academies Press, 1997. ISBN 0309174473, 9780309174473.

DOI: 10.17226/4782

Google Scholar

[2] W. Zhang, G.S. Frankel, Transitions between pitting and intergranular corrosion in AA2024, Electrochimica Acta. 48 (2003) 1193-1210.

DOI: 10.1016/s0013-4686(02)00828-9

Google Scholar

[3] J. Wloka, S. Virtanen, Detection of nanoscale η-MgZn2 phase dissolution from an Al-Zn-Mg-Cu alloy by electrochemical mocrotransients, Surface and Interface Analysis. 40 (2008) 1219-1225.

DOI: 10.1002/sia.2868

Google Scholar

[4] V. Guillaumin, G. Mankowski, Localised corrosion of 2024 T351 aluminum alloy in chloride media, Corrosion Science. 41 (1998) 421-438.

DOI: 10.1016/s0010-938x(98)00116-4

Google Scholar

[5] J.R. Galvele, S.M. DeMichelis, Mechanism of intergranular corrosion of Al-Cu alloys, Corrosion Science. 10 (1970) 795.

DOI: 10.1016/s0010-938x(70)80003-8

Google Scholar

[6] C. Luo, X. Zhou, G.E. Thompson, Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy, Corrosion Science. 61 (2012) 35 - 44.

DOI: 10.1016/j.corsci.2012.04.005

Google Scholar

[7] N. Birbilis, M.K. Cavanaugh, L. Kovarik, R.G. Buchheit, Nano-scale dissolution phenomena in Al–Cu–Mg alloys, Electrochemistry Communications. 10 (2008) 32-37.

DOI: 10.1016/j.elecom.2007.10.032

Google Scholar

[8] R.G. Buchheit, R.K. Boger, M.W. Donohue, Copper dissolution phenomena in Al-Cu and Al-Cu-Mg alloys, Corrosion and Corrosion Control in Saltwater Environments, Proceedings of the Symposium on Seawater Corrosion. D.A. Shifler, P. M Natishan, T. Tsuru, S. Ito (Eds), The Electrochemical Society INC, Pennington. 99(2000).

DOI: 10.1002/maco.201608979

Google Scholar

[9] R.G. Buchheit, The electrochemistry of q (Al2Cu), S (Al2CuMg) and T1 (Al2CuLi) and localized corrosion and environment assisted cracking in high strengh Al alloys. Aluminium Alloys: Their Physical and Mechanical Properties, Proceedings of the 7th International Conference ICAA7, Charlottesville, Virginia. E. A Starke, T.H. Sanders, W. A. Cassada (Eds), 331-337 (2000).

Google Scholar

[10] R.G. Buchheit, L.P. Montes, M.A. Martinez, J. Michael, P.F. Hlava, The electrochemical characteristics of bulk-synthetized Al2CuMg, Journal of the Electrochemical Society. 146 (1999) 4424.

DOI: 10.1149/1.1392654

Google Scholar

[11] N. Birbilis, R.G. Buchheit, The electrochemical characteristics of bulk synthesized Al2CuMg, Journal of the Electrochemical Society. 152 (2005) B140.

Google Scholar

[12] L. Lacroix, L. Ressier, C. Blanc, G. Mankowski, Statistical study of the corrosion behavior of Al2CuMg intermetallics in AA2024-T351 by SPKFM, Journal of the Electrochemical Society. 155 (2008) C8.

DOI: 10.1149/1.2799089

Google Scholar

[13] L. Lacroix, C. Blanc, N. Pebere, G.E. Thompson, B. Tribollet, V. Vivier, Simulating the galvanic coupling between S-Al2CuMg phase particles and the matrix of 2024 aerospace aluminium alloy, Corrosion Science. 64 (2012) 213-221.

DOI: 10.1016/j.corsci.2012.07.020

Google Scholar

[14] L. Lacroix, L. Ressier, C. Blanc, G. Mankowski, Combination of AFM, SKPFM, and SIMS to study the corrosion behavior of S-phase particles in AA2024-T351, Journal of the Electrochemical Society. 155 (2008) C131.

DOI: 10.1149/1.2833315

Google Scholar

[15] R.G. Buchheit, A compilation of corrosion potentials reported for intermetallic phases in aluminum-alloys, Journal of the Electrochemical Society. 142 (1995) 3994-3996.

DOI: 10.1149/1.2048447

Google Scholar

[16] S. Garcia-Vergara, P. Skeldon, G.E. Thompson, P. Bailey, T.C.Q. Noakes, H. Habazaki, K. Shimizu, Morphology of enriched alloy layers in an anodized Al-Cu alloy, Applied Surface Science. 205 (2003) 121-127.

DOI: 10.1016/s0169-4332(02)01040-1

Google Scholar

[17] Y. Liu, F. Colin, P. Skeldon, G. E Thompson, X. Zhou, H. Habazaki, K. Shimizu, Enrichment factors for copper in aluminium alloys following chemical and electrochemical surface treatments, Corrosion Science. 45 (2003) 1539-1544.

DOI: 10.1016/s0010-938x(02)00249-4

Google Scholar

[18] X. Zhou, G.E. Thompson, H. Habazaki, K. Shimizu, P. Skeldon, G.C. Wood, Copper enrichment in Al-Cu alloys due to electropolishing and anodic oxidation, Thin Solid Films. 293 (1997) 327-332.

DOI: 10.1016/s0040-6090(96)09117-1

Google Scholar

[19] H. Habazaki, K. Shimizu, M.A. Paez, P. Skeldon, G.E. Thompson, G.C. Wood, X. Xhou, Oxidation of Copper and Mobility of Copper Ions During Anodizing of an Al-1. 5wt. % Cu Alloy, Surface and Interface Analysis. 13 (1995) 892-898.

DOI: 10.1002/sia.740231307

Google Scholar

[20] T. Hashimoto, X. Zhou, P. Skeldon, G.E. Thompson, Structure of the Copper-Enriched Layer Introduced by Anodic Oxidation of Copper-Containing Aluminium Alloy, Electrochimica Acta. 179 (2015) 394-401.

DOI: 10.1016/j.electacta.2015.01.133

Google Scholar

[21] X. Zhou, G.E. Thompson, J. Robinson, P. Skelson, X-Ray Absorption Spectroscopy Study of the Incorporated Copper Species in Anodic alumina Films Formed on a Al-2 wt % Cu Alloy, Journal of The Electrochemical Society. 152 (2005) B393-B396.

DOI: 10.1149/1.2007087

Google Scholar

[22] K. Shimizu, K. Kobayashi, G.E. Thompson, P. Skeldon, G.C. Wood, The influence of θ' precipitates on the anodizing behaviour of binary Al-Cu alloys, Corrosion Science. 39 (1997) 281-284.

DOI: 10.1016/s0010-938x(97)83347-1

Google Scholar

[23] X. Zhou, G.E. Thompson, P. Skeldon, K. Shimizu, H Habazaki, G.C. Wood, The valence state of copper in anodic films formed on Al-1at. % Cu alloy, Corrosion Science. 47 (2005) 1299-1306.

DOI: 10.1016/j.corsci.2004.07.026

Google Scholar

[24] C. Blanc, A. Freulon, M.C. Lafont, Y. Kihn, G. Mankowski, Modelling the corrosion behavior of Al2CuMg coarse particles in copper-rich aluminum alloy, Corrosion Science. 48 (2006) 3838-3851.

DOI: 10.1016/j.corsci.2006.01.012

Google Scholar

[25] J. Idrac, C. Blanc, Y. Kihn, M.C. Lafont, G. Mankowski, P. Skeldon, G.E. Thompson, Electrochemical behavior of Magnetron-Sputtered Al-Cu alloy Films in Sulfate Solutions, Journal of The Electrochemical Society. 154 (2007) C286-C293.

DOI: 10.1149/1.2719623

Google Scholar

[26] J. Idrac, G. Mankowski, G.E. Thompson, P. Skeldon, Y. Kihn, C. Blanc, Galvanic corrosion of aluminum-copper model alloys, Electrochimica Acta. 52 (2007) 7626-7633.

DOI: 10.1016/j.electacta.2007.05.056

Google Scholar

[27] H. Habazaki, K. Shimizu, P. Skeldon, G.E. Thompson, G.C. Wood, Formation of amorphous anodic oxide films of controlled composition on alulminium alloys, Thin Solid Films. 300 (1997) 131-137.

DOI: 10.1016/s0040-6090(96)09491-6

Google Scholar

[28] W. Zhang, G.S. Frankel, Localized Corrosion Growth Kinetics in AA2024 Alloys, Journal of the Electrochemical Society. 149 (2002) B510.

DOI: 10.1149/1.1513984

Google Scholar

[29] W. Zhang, G. S Frankel, Anisotropy of localized corrosion in AA2024-T3, Electrochemical and Solid State letters. 3 (2000) 268.

DOI: 10.1149/1.1391121

Google Scholar

[30] A. Pakes, G.E. Thompson, P. Skeldon, P.C. Morgan, Development of porous anodic films on 2014 in tetraborate electrolyte, Corrosion Science. 45 (2003) 1275-1287.

DOI: 10.1016/s0010-938x(02)00216-0

Google Scholar