[1]
J. Kim, C. Marioara, R. Holmestad, E. Kobayashi, T. Sato, Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys. Mater. Sci. Eng. A 560 (2013) 154-162.
DOI: 10.1016/j.msea.2012.09.051
Google Scholar
[2]
Y. Takaki, T. Masuda, E. Kobayashi, T. Sato, effects of natural aging on bake hardening behavior of Al–Mg–Si alloys with multi-step aging process. Mater. Trans. 55 (2014) 1257-1265.
DOI: 10.2320/matertrans.l-m2014827
Google Scholar
[3]
A.K. Goupta, D.J. Lloyd, Met, Study of precipitation kinetics in a super purity Al0. 8Pct Mg0. 9 Pct Si alloy using differential scanning calorimetry. Mater. Sci. Trans. 30 A (1999) 879-884.
DOI: 10.1007/s11661-999-0081-1
Google Scholar
[4]
S. Kim, J. Kim, H. Tezuka, E. Kobayashi, T. Sato, Formation behavior of nanoclusters in Al-Mg-Si alloys with different Mg and Si concentration. Mater. Trans. 54 (2013) 297-303.
DOI: 10.2320/matertrans.mbw201208
Google Scholar
[5]
K. Yamada, T. Sato, A. Kamio, Effects of quenching conditions on two-step aging behavior of Al-Mg-Si alloys. Mater. Sci. Forum 331-337 (2000) 669-674.
DOI: 10.4028/www.scientific.net/msf.331-337.669
Google Scholar
[6]
Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Evaluation of solute clusters associated with bake-hardening response in isothermal aged Al-Mg-Si alloys using a three-dimensional atom probe. Metall. Mater. Trans. A 45 (2014) 5906-5913.
DOI: 10.1007/s11661-014-2548-y
Google Scholar
[7]
Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al–Mg–Si alloy. Mater. Sci. Eng. A 631 (2015) 86-96.
DOI: 10.1016/j.msea.2015.02.035
Google Scholar
[8]
A. Serizawa, S. Hirosawa, T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si Alloy. Metall. Mater. Trans. A 39 (2008) 243-251.
DOI: 10.1007/s11661-007-9438-5
Google Scholar
[9]
M. Murayama, K. Hono, Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta mater. 47 (1999) 1537-1548.
DOI: 10.1016/s1359-6454(99)00033-6
Google Scholar
[10]
J. Banhart, M.D.H. Lay, C.S.T. Chang, A.J. Hill, Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy. Phys. Rev. B 83(2011) 014101.
DOI: 10.1103/physrevb.83.014101
Google Scholar
[11]
S. Hirosawa, F. Nakamura, T. Sato, T. Hoshino, First-principles calculation of interaction energies between solutes and/or vacancies and the prediction of atomistic behaviors of microalloying elements in aluminum alloys. J. Jpn. Inst. Light Met. 56 (2006).
Google Scholar
[12]
M. Saga, M. Kikuchi, Effect of Sn addition on the two-step againg behavior in Al-Mg-Si alloys for automotive application. Proceedings of ICAA-9. (2004) 520-526.
Google Scholar
[13]
S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, S.S.A. Gerstl, M.F. Francis, W.A. Curtin, J.F. Löffler and P.J. Uggowitzer, Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys. Phys. Rev. Lett. 112 (2014).
DOI: 10.1103/physrevlett.112.225701
Google Scholar
[14]
J.M. Hyde, C.A. English, An analysis of the structure of irradiation induced Cu-enriched clusters in low and high nickel welds. Materials Research Society, Pittsburgh, PA, 650(2001) R6. 6.
DOI: 10.1557/proc-650-r6.6
Google Scholar
[15]
I.J. Polmear, Light alloys: From traditional alloys to nanocrystals, 4th ed., Elsevier/Butterworth-Heinemann, Oxford, (2005).
Google Scholar
[16]
M. Werinos, H. Antreknowitsch, E. Kozeschnik, T. Ebner, F. Moszner, J.F. Löffler, P.J. Uggowitzer, S. Pogatscher, Influence of temperature on natural aging kinetics of aa6061 modified with Sn. Scr. Mater. 112 (2016) 148-151.
DOI: 10.1016/j.scriptamat.2015.09.037
Google Scholar