Directionality and Column Arrangement Principles of Precipitates in Al-Mg-Si-(Cu) and Al-Mg-Cu Linked to Line Defect in Al

Article Preview

Abstract:

In the structures of all metastable precipitates in Al-Mg-Cu and Al-Mg-Si alloys, we find that column surrounding of an element column in the needle/lath direction order according to simple principles. Advanced transmission electron microscopy and DFT calculations support the principles originate with a line defect, which is a segment of a <100>Al column shifted to interstitial positions. We propose the defect aids solute decomposition by partitioning the FCC matrix locally into columns of fewer and higher number of nearest neighbours, which suit smaller and larger size solute atoms, respectively. The defect explains how <100> directionality of the precipitates can arise in a cluster. Ordering of a few defects leads naturally to GPB zones in Al-Mg-Cu and to β'' in Al-Mg-Si.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] N.A. Bul'enkov, A.G. Yakovenko, O.M. Ul'yanikhina, J. Struct. Chem., 11 (1971) 1059-1061.

Google Scholar

[2] S.J. Andersen, C.D. Marioara, R. Vissers, A.G. Frøseth, H.W. Zandbergen, Mat. Sci. Eng. A444 (2007) 157-169.

Google Scholar

[3] H.W. Zandbergen, S.J. Andersen, J. Jansen, Science 277 (1997) 1221-1225.

Google Scholar

[4] S.J. Andersen, C.D. Marioara, A.G. Frøseth, R. Vissers, H.W. Zandbergen, Mat. Sci. Eng. A 390 (2005) 127-138.

Google Scholar

[5] R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, Acta Mater. 55 (2007) 3815-3823.

DOI: 10.1016/j.actamat.2007.02.032

Google Scholar

[6] R. Vissers, C.D. Marioara, S.J. Andersen, R. Holmestad, Proc. ICAA11 II (2008) 1263-1269.

Google Scholar

[7] M. Torsæter, F.J.H. Ehlers, C.D. Marioara, S.J. Andersen, R. Holmestad, Phil. Mag. 92 (2012) 3833-3856.

DOI: 10.1080/14786435.2012.693214

Google Scholar

[8] L. Arnberg, B. Aurivillius, Acta Chem. Scand. A 34 (1980) 1-5.

Google Scholar

[9] L. Kovarik, S.A. Court, H.L. Fraser, M. J: Mills, Acta Mater. 56 (2008) 4804-4815.

Google Scholar

[10] Z. R. Liu, J. H. Chen, S. B. Wang, S. W. Yuan, M. J. Yin, C.L. Wu, Acta. Mater. 59 (2011) 7396-7405.

Google Scholar

[11] M.A. van Huis, M.H.F. Sluiter, J.H. Chen, H.W. Zandbergen, Phys. Rev. B 76 (2007) 174113.

Google Scholar

[12] G. Kresse and J. Hafner, Phys. Rev. B, 32 (1993) 558-561.

Google Scholar

[13] G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6 (1996) 15-50.

Google Scholar

[14] P. Hohenberg, W. Kohn, Phys. Rev. B136 (1964) 864-871.

Google Scholar

[15] W. Kohn, L. J. Sham, Phys. Rev. A140 (1965) 1133-1138.

Google Scholar

[16] H.S. Hasting, A.G. Frøseth, S.J. Andersen, R. Vissers, J.C. Walmsley, C.D. Marioara, F. Danoix, W. Lefebvre, R. Holmestad, J. Appl. Phys. 106 (2009) 123527.

DOI: 10.1063/1.3269714

Google Scholar

[17] T. Saito, F. J. H. Ehlers, W. Lefebvre, D. Hernandez-Maldonado, R. Bjørge, C. D. Marioara, S. J. Andersen, R. Holmestad, Acta. Mater. 78 (2014) 245-253.

DOI: 10.1016/j.actamat.2014.06.055

Google Scholar

[18] T. Saito, C.D. Marioara, S.J. Andersen, W. Lefebvre, R. Holmestad, Phil. Mag. 94 (2014) 520-531.

Google Scholar

[19] E.A. Mørtsell, S.J. Andersen, J. Friis, C.D. Marioara, R. Holmestad, Submitted.

Google Scholar

[20] E.A. Mørtsell, C.D. Marioara, S.J. Andersen, J. Røyset, O. Reiso, R. Holmestad, Met. Mater. Trans. 46A (2015) 4369-4379.

DOI: 10.1007/s11661-015-3039-5

Google Scholar

[21] M. Mihara, C.D. Marioara, S.J. Andersen, R. Holmestad, E. Kobayashi, T. Sato, Mat. Sci. Eng. A658 (2016) 91-98.

Google Scholar

[22] F.J.H. Ehlers, S. Wenner, S.J. Andersen, C.D. Marioara, W. Lefebvre, C.B. Boothroyd, R. Holmestad, J. Mat. Sci. 49 (2014) 6413-6426.

DOI: 10.1007/s10853-014-8371-4

Google Scholar

[23] C.D. Marioara, S.J. Andersen, J. Røyset, O. Reiso, S. Gulbrandsen-Dahl, T. -E. Nicolaisen, I. -E. Opheim, J.F. Helgaker, R. Holmestad, Met. Mat. Trans. 45A (2014) 2938-2949.

DOI: 10.1007/s11661-014-2250-0

Google Scholar