Gas Blow Forming in AA2017 Aluminium Alloy

Article Preview

Abstract:

In this paper the hot behaviour of AA2017 aluminium alloy sheet was analyzed through gas blow forming tests. The material, heated and kept at a constant temperature, was subjected to gas blow forming tests under a constant pressure. Specimens with a thickness of 1.00 mm and 0.55 mm were employed. The study defines a reference value for the forming temperature as well as the hardness of the finished component. In addition, the hardness was also measured following tests conducted in several steps of the forming process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-17

Citation:

Online since:

November 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Ridley, Metals for superplastic forming, in: Superplastic forming of advanced metallic materials, G. Giuliano, Ed., Cambridge, UK, Woodhead Publishing Limited, pp.3-33, (2011).

DOI: 10.1533/9780857092779.1.3

Google Scholar

[2] S. Franchitti, G. Giuliano, G. Palumbo, D. Sorgente and L. Tricarico, On the optimisation of superplastic free forming test of an AZ31 magnesium alloy sheet, Int. J. Mater. Form. vol. 1, 1, pp.1067-1070, (2008).

DOI: 10.1007/s12289-008-0203-0

Google Scholar

[3] P.E. Krajewski and J.G. Schroth, Quick plastic forming of aluminium alloys, in: Superplastic forming of advanced metallic materials, G. Giuliano, Ed., Cambridge, UK, Woodhead Publishing Limited, pp.3-303, (2011).

DOI: 10.1533/9780857092779.3.272

Google Scholar

[4] R. Boissiere, S. Terzi, J.J. Blandin and L. Salvo, Quick plastic forming: similarities and differences with superplastic forming, in 6th EUROSPF Conf. Carcassonne, France, Sept 3-5 (2008).

Google Scholar

[5] G. Giuliano, Mathematical modelling to evaluate the superplastic material constants by bulge test, Appl. Mech. Mater. vol. 607, pp.29-32, (2014).

DOI: 10.4028/www.scientific.net/amm.607.29

Google Scholar

[6] G. Giuliano, Constitutive modelling of superplastic AA-5083, Tech. Mech. vol. 32, 2-5, pp.221-226, (2012).

Google Scholar

[7] G. Giuliano, AZ31 magnesium alloy parameters identification through inverse analysis at 713 K, Key Eng. Mat. vol. 504-506, pp.643-646, (2012).

DOI: 10.4028/www.scientific.net/kem.504-506.643

Google Scholar

[8] G. Giuliano and S. Franchitti, The determination of material parameters from superplastic free-bulging tests at constant pressure, Int. J. Mach. Tool Manu. Vol. 48, 12-13, pp.1519-1522, (2008).

DOI: 10.1016/j.ijmachtools.2008.05.007

Google Scholar

[9] G. Giuliano, Constitutive equation for superplastic Ti-6Al-4V alloy, Mater. Design vol. 29, 7, pp.1330-1333, (2008).

DOI: 10.1016/j.matdes.2007.07.001

Google Scholar

[10] F. Jovane, An approximate analysis of the superplastic forming of a thin circular diaphragm, Int. J. Mech. Sci. vol. 10, pp.403-427, (1968).

DOI: 10.1016/0020-7403(68)90005-2

Google Scholar

[11] F.U. Enikeev and A.A. Kruglov, An analysis of the superplastic forming of a thin circular diaphragm, Int. J. Mech. Sci. vol. 37, 5, pp.473-483, (1995).

DOI: 10.1016/0020-7403(94)00081-t

Google Scholar

[12] J.H. Cheng, The determination of material parameters from superplastic inflation tests, J. Mater. Process. Tech. vol. 58 pp.233-246, (1996).

Google Scholar

[13] G. Giuliano, Evaluation of the Coulomb friction coefficient by the Erichsen test, Appl. Mech. Mater. vol. 365-366, pp.1190-1193, (2013).

DOI: 10.4028/www.scientific.net/amm.365-366.1190

Google Scholar

[14] G. Giuliano and F. Samani, Effect of Lubrication on the Erichsen Test, Appl. Mech. Mater. vol. 607, pp.425-428, (2013).

Google Scholar

[15] G. Giovinco, G. Giuliano and G. Testa, Forming apparatus to investigate the effect of temperature on the superplastic behaviour of alloys, in AIP Conf. Proc. vol. 1252, pp.304-311, (2010).

DOI: 10.1063/1.3457567

Google Scholar