Observation of Fatigue Fracture on PEEK Shaft against Alumina Bearing’s Ball under One-Point Rolling Contact

Article Preview

Abstract:

Tribological fatigue failure of the machined PEEK shaft was investigated through the one-point type rolling contact fatigue test between a PEEK shaft and an alumina ball, in order to explore fatigue fracture mechanism of frictional parts working at high frequency in various mechanical elements. Due to Hertzian contact of cyclic compressive stress, the subsurface crack occurred within approximately 300 μm depth from thesurface and propagated along the rolling direction. After that, the subsurface crack propagation direction changed toward the surface. The flaking occurred on the raceway of the PEEK shaft when the subsurface crack reached to the PEEK shaft surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-141

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. A. Stolarski, Rolling Contact Fatigue of Polymers and Polymer Composites, Advanced in Composite Tribology edited by K. Friedrich, Elservier, 1993, Chapter 17.

DOI: 10.1016/b978-0-444-89079-5.50021-0

Google Scholar

[2] K. Friedrich, G. Theiler and P. Klein, Polymer composites for tribological applications in a range between liquid helium and room temperature, In: SinhaSK, BriscoeBJ, editors. Polymer Tribology, London UK: Imperial College Press, (2009).

DOI: 10.1142/9781848162044_0011

Google Scholar

[3] K. Friedrich, Z. Lu and A. M. Hager, Overview on polymer composites for friction and wear application, Theoretical and Applied Fracture Mechanics, 19, (1993), 1-11.

DOI: 10.1016/0167-8442(93)90029-b

Google Scholar

[4] M. Harrass, K. Friedrich, A. A. Almajid, Tribological behavior of selected engineering polymers under rolling contact, Tribology International, 43, (2010), 635-646.

DOI: 10.1016/j.triboint.2009.10.003

Google Scholar

[5] DearnKD, KukurekaSN, WaltonD., Engineering polymers and composites for machine elements. In: SinhaSK, BriscoeBJ, editors. Polymer Tribology. London UK: Imperial College Press; (2009), 470-505 [Chapter 14].

Google Scholar

[6] H. Koike, T. Honda, K. Kida, E.C. Santos, J. Rozwadowska, K. Houri, M. Uryu, Y. Kashima, K. Kanemasu, Influence of radial load on PEEK plastic bearings life cycle under water lubricated conditions, Advanced Materials Research, 217-218, (2011).

DOI: 10.4028/www.scientific.net/amr.217-218.1260

Google Scholar

[7] H. Koike, K. Kida, E. C. Santos, J. Rozwadowska, Y. Kashima and K. Kanemasu, Tribology International, 49, (2012), 30-38.

DOI: 10.1016/j.triboint.2011.12.005

Google Scholar

[8] H. Koike, K. Kida, T. Honda, K. Mizobe, S. Oyama, J. Rozwadowska, Y. Kashima, K. Kanemasu, Observation of crack propagation in PEEK polymer bearings under water- lubricated conditions, Advanced Materials Research, 566, (2012), 109-114.

DOI: 10.4028/www.scientific.net/amr.566.109

Google Scholar

[9] J. Rozwadowska, K. Kida, E. C. Santos, T. Honda, H. Koike, K. Kanemasu, Investigation of crack initiation and propagation during rolling contact fatigue of SUJ2 steel bearings using a newly developed one-point testing machine, Advanced Materials Research, 418-420, (2012).

DOI: 10.4028/www.scientific.net/amr.418-420.1613

Google Scholar

[10] H. Hertz, Über die Berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik, 92, (1881), 156-171.

DOI: 10.1515/9783112342404-004

Google Scholar