Modelling Yield Strength in an A6061 Aluminium Alloy

Article Preview

Abstract:

The yield strength of an A6061 Aluminium alloy for different artificial ageing times, strain rates and temperatures is modelled taking into account precipitation, solid solution and dislocation forest strengthening. Precipitation kinetics during artificial aging and the individual strength contributions are simulated with the thermokinetic software package MatCalc. In the present contribution, we introduce the model for the temperature and strain rate dependence of the yield-strength based on thermal activation theory. The experimental work presented here is performed on a Gleeble 1500 thermo-mechanical simulator, where the solution annealed and quenched samples are heat treated to produce materials in various microstructural conditions. We demonstrate that yield strength simulation is a powerful tool to reduce experimental effort and to cut down costs in the process of alloy engineering. This approach consistently represents the yielding behaviour of alloys in a variety of microstructural conditions with respect to the production history of the alloy and the testing conditions, i.e. temperature and strain rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1014-1018

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Vissers, M. A. van Huis, The crystal structure of the β' phase in Al-Mg-Si alloys., Acta metall. mater., Vol. 55, pp.3815-23, (2007).

DOI: 10.1016/j.actamat.2007.02.032

Google Scholar

[2] http: /matcalc. tuwien. ac. at.

Google Scholar

[3] G. I. Taylor, The Mechanism of Plastic Deformation of Crystals., Proc. R. Soc. Lond. A., p.362 ff, (1934).

Google Scholar

[4] U. F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case., Progress in Materials Science, Vol.: 48, pp.171-273, (2003).

DOI: 10.1016/s0079-6425(02)00003-8

Google Scholar

[5] S. Brinkmann, R. Sivanesapillai, Inter. Journal of Fatique , Vol.: 33, pp.1369-1375, (2011).

Google Scholar

[6] R. Fleischer, Substitutional solution hardening, Acta metall. mater., Vol. 11, pp 203ff, (1963).

Google Scholar

[7] M. Kato, Introduction to the Theory of dislocations, fourth de., Butterworth-Heinemann, Oxford, (2001).

Google Scholar

[8] P. S. Follansbee, U. F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable., Acta metall., vol. 36, No. 1, pp.81-93, (1988).

DOI: 10.1016/0001-6160(88)90030-2

Google Scholar

[9] D. M. Goto, J. F. Bingert, The mechanical threshold stress constitutive –strength model description of HY-100 steel., Metall. Mater. Trans. A, Vol. 31A, pp.1985-96, (2000).

DOI: 10.1007/s11661-000-0226-8

Google Scholar

[10] J. P. Hirth, J. Lothe, Theory of dislocations, second ed., Wiley, New York, p.839, (1982).

Google Scholar

[11] P. S. Follansbee, Analysis of deformation kinetics in seven body-centered-cubic pure metals using a two-obstacle model., Metall. Mater. Trans. A., Vol. 41, pp.3080-3090, (2010).

DOI: 10.1007/s11661-010-0372-6

Google Scholar

[12] H. Frost, M. Ashby, Deformation-mechanism maps, Pergamon Press, Oxford, (1982).

Google Scholar

[13] T. Uesugi, K. Higashi, First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys., Comp. Mater. Sci., Vol. 67, pp.1-10, (2013).

DOI: 10.1016/j.commatsci.2012.08.037

Google Scholar

[14] H. R. Shercliff, M. F. Ashby, A process model for age hardening of aluminum alloys – I the model., Acta metall. mater., Vol. 38, No. 10, pp.1789-1802, (1990).

DOI: 10.1016/0956-7151(90)90291-n

Google Scholar

[15] M. Koizumi, S. Kohara, Kinetics of recrystallization in Al-Mg alloys, Z. Metallkd. Vol 91, pp.460-67, (2000).

Google Scholar