New Metallurgy of Additive Manufacturing in Metal: Experiences from the Material and Process Development with Electron Beam Melting Technology (EBM)

Article Preview

Abstract:

Additive manufacturing (AM) is becoming one of the most discussed modern technologies. Significant achievements of the AM in metals today are mainly connected to the unprecedented freedom of component shapes this technology allows. But full potential of these methods lies in the development of new materials designed to be used specifically with AM. Proper understanding of the AM process will open up new possibilities, where material and component properties can be specifically tailored by controlling the parameters throughout the whole manufacturing process. Present paper discusses the issues related to the beam melting technologies AM and electron beam welding (EBW). We are speaking of new direction in material science that can be termed “non-stationary metallurgy”, using the examples from material and process development for EBW, electron beam melting (EBM®) and other additive manufacturing methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

996-1001

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhai, H. Galarraga, D.A. Lados, Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques, Procedia Engineering 114 ( 2015 ) 658 – 666.

DOI: 10.1016/j.proeng.2015.08.007

Google Scholar

[2] L.E. Murr, S.M. Gaytan, A. Ceylan. E. Martineza, J.L. Martineza, D.H. Hernandeza, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater. 58 (2010).

DOI: 10.1016/j.actamat.2009.11.032

Google Scholar

[3] D. Cormier, O. Harrysson, H. West, Characterization of H13 Steel Produced via Electron Beam Melting, Rapid Prototyping J. 10 (2004) 35-41.

DOI: 10.1108/13552540410512516

Google Scholar

[4] L. -E. Rannar, A. Glad, C. -G. Gustafson, Efficient cooling with tool inserts manufactured by electron beam melting, Rapid Prototyping J. 13 (2007) 128-135.

DOI: 10.1108/13552540710750870

Google Scholar

[5] E. Herderick, Additive Manufacturing of Metals: A Review, Mater. Sci. Tech. Proc. (2011) October 16-20, 2011, Columbus, (Hoboken, NJ: Wiley, 2011), p.1413–1425.

Google Scholar

[6] W.E. Frazier, Metal Additive Manufacturing: A Review, JMEPEG 23 (2014) 1917–(1928).

Google Scholar

[7] A. Koptyug, L. -E. Rännar, M. Bäckström, A. Langlet, Bulk Metallic Glass Manufacturing using Electron Beam Melting, Proc. Intl. Conf. on Additive Manufacturing and 3D Printing, July 2013, Nottingham, UK.

Google Scholar

[8] S. Pauly, L. Löber, Romy Petters1, M. Stoica, S. Scudino, U. Kühn, J. Eckert, Processing metallic glasses by selective laser melting, Materials Today, 16(2013) 37–41.

DOI: 10.1016/j.mattod.2013.01.018

Google Scholar

[9] S. Tsukamoto, O. Umezawa, Metastable alloy phase formation from undercooled steel and TiAl melts, Mater. Sci. Eng. A 223(S 1–2) (1997) 99–113.

DOI: 10.1016/s0921-5093(96)10474-3

Google Scholar

[10] N. Saresh, M.G. Pillai, J. Mathew, Investigations into the effects of electron beam welding on thick Ti–6Al–4V titanium alloy, J. Mater. Proc. Tech. 192–193 (2007) 83–88.

DOI: 10.1016/j.jmatprotec.2007.04.048

Google Scholar

[11] H. Hemmer, Ø. Grong, A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to Electron Beam Welding, Matellurgical and Materials Transactions A, 31A (2000) 1035- 1048.

DOI: 10.1007/s11661-000-0045-y

Google Scholar

[12] B. Joseph, D. Katherasan, P. Sathiya, C.V. S Murthy, Weld metal characterization of 316L(N) austenitic stainless steel by electron beam welding process, Int. J. Eng. Sci. Tech. 4 (2012) 169-176.

DOI: 10.4314/ijest.v4i2.13

Google Scholar

[13] S. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics, Additive Manufacturing, 8 (2015) 36-62.

DOI: 10.1016/j.addma.2015.07.001

Google Scholar

[14] N. Shamsaei, A. Yadollahi, L. Bian, S. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, process parameter optimization and control, Additive Manufacturing 8 (2015) 12-35.

DOI: 10.1016/j.addma.2015.07.002

Google Scholar

[15] B. Cheng, S. Price, J. Lydon, K. Cooper, K. Chou, On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation, Transactions of ASME, J. Manuf. Sci. Eng 136 (2014) 7 pages.

DOI: 10.1115/1.4028484

Google Scholar

[16] B. Cheng, S. Price, X. Gong, K. Chou, Speed Function Effects in Electron Beam Additive Manufacturing, Proc. ASME 2014 International Mechanical Engineering Congress IMECE2014, 2014, Montreal, Canada, 9 pages.

DOI: 10.1115/imece2014-36664

Google Scholar

[17] J. Romano, L. Ladani, J. Razmi, M. Sadowski, Temperature Distribution and Melt Geometry in Laser and Electron-Beam Melting Processes–A Comparison among Common Materials, Additive Manufacturing 8 (2015) 1-11.

DOI: 10.1016/j.addma.2015.07.003

Google Scholar

[18] M.M. Pariona, A.C. Mossi, Numerical Simulation of Heat Transfer During the Solidification of Pure Iron in Sand and Mullite Molds, J. of the Braz. Soc. of Mech. Sci. & Eng. 27 (2005) 399-406.

DOI: 10.1590/s1678-58782005000400008

Google Scholar

[19] C. Fu, Y.B. Guo, Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V, Transactions of ASME J. Manuf. Sci. Eng., 136 (2014) 7 pages.

DOI: 10.1115/1.4028539

Google Scholar

[20] G. Marshall, W.J. Young II, N. Shamsaei, J. Craig, T. Wakeman, S.M. Thompson, Dual Thermographic Monitoring of Ti-6Al-4V Cylinders During Direct Laser Deposition, Proc. Intl. Solid Freeform Fabrication Symposium, August 2015, Austin, Texas, USA (2015).

Google Scholar

[21] W.G. Pfann (1966) Zone Melting, Ed. J.H. Hollomon, Literary Licensing, LLC, (2013).

Google Scholar

[22] E.F.G. Herington, Zone refinement as a purification tool, Annals of the New York Academy of Sciences 137 (1066) 63-71.

Google Scholar

[23] D.A. Schauer, Thermal and Dynamic Effects in the Electron Beam Welding Cavities, PhD Thesis, Lawrence Livermore Laboratory, University of Livermore, California (1977) 162 pages.

Google Scholar

[24] W. Huiqiang, F. Jicai, H. Jingshan, Microstructure evolution and fracture behaviour for electron beam welding of Ti-6Al-4V, Bulletin of Materials Science, 27 (2004) 387-392.

DOI: 10.1007/bf02704777

Google Scholar

[25] S. Tsukamoto, H. Harada, H.K.D.H. Bhadeshia, Metastable phase solidification in electron beam welding of dissimilar stainless steels, Mater. Sci. Eng. A178 (1994) 189-194.

DOI: 10.1016/0921-5093(94)90541-x

Google Scholar

[26] X-G Yang, S-L Li, H-Y Qi, Tensile properties and failure analysis of Ti–6Al–4V joints by electron beam welding, Rare Metals (2014) pp.1-6.

DOI: 10.1007/s12598-014-0319-y

Google Scholar

[27] L. Facchini, E. Magalini, P. Robotti, A. Molinari, Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders, Rapid Prototyping J. 15 (2009) 171-178.

DOI: 10.1108/13552540910960262

Google Scholar

[28] N. Hrabe, R. Kircher, T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location, Mater. Sci. Eng A-Structural Materials Properties Microstructure and Processing, (2013).

DOI: 10.1016/j.msea.2013.02.065

Google Scholar