[1]
Y. Zhai, H. Galarraga, D.A. Lados, Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques, Procedia Engineering 114 ( 2015 ) 658 – 666.
DOI: 10.1016/j.proeng.2015.08.007
Google Scholar
[2]
L.E. Murr, S.M. Gaytan, A. Ceylan. E. Martineza, J.L. Martineza, D.H. Hernandeza, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater. 58 (2010).
DOI: 10.1016/j.actamat.2009.11.032
Google Scholar
[3]
D. Cormier, O. Harrysson, H. West, Characterization of H13 Steel Produced via Electron Beam Melting, Rapid Prototyping J. 10 (2004) 35-41.
DOI: 10.1108/13552540410512516
Google Scholar
[4]
L. -E. Rannar, A. Glad, C. -G. Gustafson, Efficient cooling with tool inserts manufactured by electron beam melting, Rapid Prototyping J. 13 (2007) 128-135.
DOI: 10.1108/13552540710750870
Google Scholar
[5]
E. Herderick, Additive Manufacturing of Metals: A Review, Mater. Sci. Tech. Proc. (2011) October 16-20, 2011, Columbus, (Hoboken, NJ: Wiley, 2011), p.1413–1425.
Google Scholar
[6]
W.E. Frazier, Metal Additive Manufacturing: A Review, JMEPEG 23 (2014) 1917–(1928).
Google Scholar
[7]
A. Koptyug, L. -E. Rännar, M. Bäckström, A. Langlet, Bulk Metallic Glass Manufacturing using Electron Beam Melting, Proc. Intl. Conf. on Additive Manufacturing and 3D Printing, July 2013, Nottingham, UK.
Google Scholar
[8]
S. Pauly, L. Löber, Romy Petters1, M. Stoica, S. Scudino, U. Kühn, J. Eckert, Processing metallic glasses by selective laser melting, Materials Today, 16(2013) 37–41.
DOI: 10.1016/j.mattod.2013.01.018
Google Scholar
[9]
S. Tsukamoto, O. Umezawa, Metastable alloy phase formation from undercooled steel and TiAl melts, Mater. Sci. Eng. A 223(S 1–2) (1997) 99–113.
DOI: 10.1016/s0921-5093(96)10474-3
Google Scholar
[10]
N. Saresh, M.G. Pillai, J. Mathew, Investigations into the effects of electron beam welding on thick Ti–6Al–4V titanium alloy, J. Mater. Proc. Tech. 192–193 (2007) 83–88.
DOI: 10.1016/j.jmatprotec.2007.04.048
Google Scholar
[11]
H. Hemmer, Ø. Grong, A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to Electron Beam Welding, Matellurgical and Materials Transactions A, 31A (2000) 1035- 1048.
DOI: 10.1007/s11661-000-0045-y
Google Scholar
[12]
B. Joseph, D. Katherasan, P. Sathiya, C.V. S Murthy, Weld metal characterization of 316L(N) austenitic stainless steel by electron beam welding process, Int. J. Eng. Sci. Tech. 4 (2012) 169-176.
DOI: 10.4314/ijest.v4i2.13
Google Scholar
[13]
S. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics, Additive Manufacturing, 8 (2015) 36-62.
DOI: 10.1016/j.addma.2015.07.001
Google Scholar
[14]
N. Shamsaei, A. Yadollahi, L. Bian, S. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, process parameter optimization and control, Additive Manufacturing 8 (2015) 12-35.
DOI: 10.1016/j.addma.2015.07.002
Google Scholar
[15]
B. Cheng, S. Price, J. Lydon, K. Cooper, K. Chou, On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation, Transactions of ASME, J. Manuf. Sci. Eng 136 (2014) 7 pages.
DOI: 10.1115/1.4028484
Google Scholar
[16]
B. Cheng, S. Price, X. Gong, K. Chou, Speed Function Effects in Electron Beam Additive Manufacturing, Proc. ASME 2014 International Mechanical Engineering Congress IMECE2014, 2014, Montreal, Canada, 9 pages.
DOI: 10.1115/imece2014-36664
Google Scholar
[17]
J. Romano, L. Ladani, J. Razmi, M. Sadowski, Temperature Distribution and Melt Geometry in Laser and Electron-Beam Melting Processes–A Comparison among Common Materials, Additive Manufacturing 8 (2015) 1-11.
DOI: 10.1016/j.addma.2015.07.003
Google Scholar
[18]
M.M. Pariona, A.C. Mossi, Numerical Simulation of Heat Transfer During the Solidification of Pure Iron in Sand and Mullite Molds, J. of the Braz. Soc. of Mech. Sci. & Eng. 27 (2005) 399-406.
DOI: 10.1590/s1678-58782005000400008
Google Scholar
[19]
C. Fu, Y.B. Guo, Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V, Transactions of ASME J. Manuf. Sci. Eng., 136 (2014) 7 pages.
DOI: 10.1115/1.4028539
Google Scholar
[20]
G. Marshall, W.J. Young II, N. Shamsaei, J. Craig, T. Wakeman, S.M. Thompson, Dual Thermographic Monitoring of Ti-6Al-4V Cylinders During Direct Laser Deposition, Proc. Intl. Solid Freeform Fabrication Symposium, August 2015, Austin, Texas, USA (2015).
Google Scholar
[21]
W.G. Pfann (1966) Zone Melting, Ed. J.H. Hollomon, Literary Licensing, LLC, (2013).
Google Scholar
[22]
E.F.G. Herington, Zone refinement as a purification tool, Annals of the New York Academy of Sciences 137 (1066) 63-71.
Google Scholar
[23]
D.A. Schauer, Thermal and Dynamic Effects in the Electron Beam Welding Cavities, PhD Thesis, Lawrence Livermore Laboratory, University of Livermore, California (1977) 162 pages.
Google Scholar
[24]
W. Huiqiang, F. Jicai, H. Jingshan, Microstructure evolution and fracture behaviour for electron beam welding of Ti-6Al-4V, Bulletin of Materials Science, 27 (2004) 387-392.
DOI: 10.1007/bf02704777
Google Scholar
[25]
S. Tsukamoto, H. Harada, H.K.D.H. Bhadeshia, Metastable phase solidification in electron beam welding of dissimilar stainless steels, Mater. Sci. Eng. A178 (1994) 189-194.
DOI: 10.1016/0921-5093(94)90541-x
Google Scholar
[26]
X-G Yang, S-L Li, H-Y Qi, Tensile properties and failure analysis of Ti–6Al–4V joints by electron beam welding, Rare Metals (2014) pp.1-6.
DOI: 10.1007/s12598-014-0319-y
Google Scholar
[27]
L. Facchini, E. Magalini, P. Robotti, A. Molinari, Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders, Rapid Prototyping J. 15 (2009) 171-178.
DOI: 10.1108/13552540910960262
Google Scholar
[28]
N. Hrabe, R. Kircher, T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location, Mater. Sci. Eng A-Structural Materials Properties Microstructure and Processing, (2013).
DOI: 10.1016/j.msea.2013.02.065
Google Scholar