[1]
I.O. Golosnoy, A. Cipitria, T.W. Clyne, Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: A review of recent work, J. Therm. Spray Technol. 18 (2009) 809-821.
DOI: 10.1007/s11666-009-9337-y
Google Scholar
[2]
U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J. M. Dorvaux, M. Poulain, R. Mévrel, and M. Caliez, Some recent trends in research and technology of advanced thermal barrier coatings, Aerosp. Sci. Technol. 7 (2003).
DOI: 10.1016/s1270-9638(02)00003-2
Google Scholar
[3]
Z. Tang, H. Kim, I. Yaroslavski, G. Masindo, Z. Celler, and D. Ellsworth, Novel thermal barrier coatings produced by axial suspension plasma spray, Proceedings of the Internat. Thermal Spray Conference, 27-29 Sep 2011, Hamburg, Germany, DVS Media, Düsseldorf, 571-575.
DOI: 10.31399/asm.cp.itsc2011p0571
Google Scholar
[4]
S. Kozerski, L. Łatka, L. Pawlowski, F. Cernuschi, F. Petit, C. Pierlot, H. Podlesak, J. P. Laval, Preliminary study on suspension plasma sprayed ZrO2+8wt. % Y2O3 coatings, J. Eur. Ceram. Soc. 31 (2011) 2089-(2098).
DOI: 10.1016/j.jeurceramsoc.2011.05.014
Google Scholar
[5]
N. Curry, K. VanEvery, T. Snyder, N. Markocsan, Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings, Coatings 4 (2014) 630-50.
DOI: 10.3390/coatings4030630
Google Scholar
[6]
Y. Zhao, D. Li, X. Zhong, H. Zhao, L. Wang, F. Shao, C. Liu, and S. Tao, Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying, Surf. Coatings Technol. 249 (2014) 48-55.
DOI: 10.1016/j.surfcoat.2014.03.046
Google Scholar
[7]
A. Ganvir, N. Curry, S. Björklund, N. Markocsan, P. Nylén, Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS), J. Therm. Spray Technol. 24 (2015) 1195-1204.
DOI: 10.1007/s11666-015-0263-x
Google Scholar
[8]
K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, J. Almer, Column formation in suspension plasma-sprayed coatings and resultant thermal properties, J. Therm. Spray Technol. 20 (2011) 817–828.
DOI: 10.1007/s11666-011-9632-2
Google Scholar
[9]
P. Sokolowski, L. Pawlowski, D. Dietrich, T. Lampke, D. Jech, Advanced microscopic study of suspension plasma-sprayed zirconia coatings with different microstructures, J. Therm. Spray Technol. 25 (2016) 94-104.
DOI: 10.1007/s11666-015-0310-7
Google Scholar
[10]
A. Joulia, G. Bolelli, E. Gualtieri, L. Lusvarghi, S. Valeri, M. Vardelle, S. Rossignol, A. Vardelle, Comparing the deposition mechnisms in suspension plasma spray (SPS) and solution precursor plasma spray (SPPS) deposition of yttria-stabilized zirconia (YSZ), J. Eur. Ceram. Soc. 34 (2014).
DOI: 10.1016/j.jeurceramsoc.2014.05.024
Google Scholar
[11]
A. Ganvir, N. Curry, N. Markocsan, P. Nylén, M. Vilemova, Z. Pala, Influence of microstructure on thermal properties of columnar axial suspension plasma sprayed thermal barrier coatings, Proceedings of the International Thermal Spray Conference, May 11-14, 2015, Long Beach, California, USA, ASM International, 498-505.
DOI: 10.1007/s11666-015-0355-7
Google Scholar
[12]
A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, W. Yun, X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source, Z. Kristallogr. 222 (2007) 650-655.
DOI: 10.1524/zkri.2007.222.11.650
Google Scholar
[13]
Carl Zeiss X-ray Microscopy, Inc., X-ray Nanotomography in the Laboratory with ZEISS Xradia Ultra 3D X-ray Microscopes, White Paper. Pleasanton, CA, USA, 2015. Retrieved from http: /pages. microscopy. zeiss. com/X-ray-Nanotomography-in-the-Laboratory-with-ZEISS-Xradia-Ultra. html.
DOI: 10.58286/26644
Google Scholar
[14]
A.P. Merkle, J. Gelb, The Ascent of 3D X-ray Microscopy in the Laboratory, Microscopy Today (2013) 18-23.
DOI: 10.1017/s1551929513000060
Google Scholar
[15]
To be published.
Google Scholar