Gas Nitriding of High-Vanadium Alloy Steel

Article Preview

Abstract:

A composite surface layer was fabricated on a high-vanadium alloy steel (HVAS) plate by means of a surface gas nitriding at 550°C for 70h. The microstructural charaterization and phase analysis of resultant nitride layers were performed using optical, scanning electron microscopy, electron probe microanalyzer, X-ray diffraction methods and hardness measurements. The results of the investigation showed that a composite layer consisting of ε-Fe2–3N and γ'-Fe4N phases is feasible on the surface of HVAS. Vickers hardness test indicate that the hardness value of the nitrided sample is about 1100 HV at the top surface, and decreases gradually to about 700 HV in the matrix. The depth of hardened layer after surface gas nitriding was about 200 μm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1105-1110

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Z Li, W. P Tong, J. J Cui, H. Zhang, L. Q Chen, L. Zuo, Heat treatment of centrifugally cast high vanadium alloy steel for high-pressure grinding roller, Acta Metall. Sin. (Engl. Lett. ) 27 (2014) 430-435.

DOI: 10.1007/s40195-014-0075-x

Google Scholar

[2] A. Fossati, F. Borgioli, E. Galvanetto, T. Bacci, Corrosion resistance properties of glow discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions, Corros. Sci. 48 (2006) 1513-1527.

DOI: 10.1016/j.corsci.2005.06.006

Google Scholar

[3] C.X. Li, T. Bell, Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel, Corros. Sci. 46 (2004) 1527-1547.

DOI: 10.1016/j.corsci.2003.09.015

Google Scholar

[4] A.M. Abd El-Rahman, F.M. El-Hossary, T. Fitz, N.Z. Negm, F. Prokert, M.T. Pham, E. Richter, W. Moller, Effect of N2 to C2H2 ratio on r. f. plasma surface treatment of austenitic stainless steel, Surf. Coat. Technol. 183 (2004) 268-274.

DOI: 10.1016/j.surfcoat.2003.09.057

Google Scholar

[5] B. Larisch, U. Brusky, H.J. Spies, Plasma nitriding of stainless steel at low temperatures, Surf. Coat. Technol. 116-119 (1999) 205-211.

DOI: 10.1016/s0257-8972(99)00084-5

Google Scholar

[6] M. Pellizzari, A. Molinari, G. Straffelini, Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steel, Mater. Sci. Eng. A 352 (2003) 186-194.

DOI: 10.1016/s0921-5093(02)00867-5

Google Scholar

[7] J. Mongis, J.P. Peyre, C. Tournier, Nitriding of microalloyed steels, Heat Treat. Met. 3 (1984) 71-75.

Google Scholar

[8] B. Wang, S. H Sun, M. W Guo, G. F. Jin, Z. Zhou, W.T. Fu, Study on pressurized gas nitriding characteristics for steel 38CrMoAlA, Surf. Coat. Technol 279 (2015) 60-64.

DOI: 10.1016/j.surfcoat.2015.08.035

Google Scholar

[9] N. Yasumaru, Low temperature ion nitriding of austenitic stainless steels, Mater. Trans. Jpn. Inst. Met. 39 (1998) 1046-1052.

DOI: 10.2320/matertrans1989.39.1046

Google Scholar

[10] Y. Sun, Hybrid plasma surface alloying of austenitic stainless steels with nitrogen and carbon, Mater. Sci. Eng. A 404 (2005) 124-129.

DOI: 10.1016/j.msea.2005.05.061

Google Scholar

[11] L. Maldzinski,W. Liliental, G. Tymowski, J. Tacikowski, New possibilities for controlling gas nitriding process by simulation of growth kinetics of nitride layers, Surf. Eng. 15 (1999) 377-384.

DOI: 10.1179/026708499101516740

Google Scholar

[12] R. Mohammadzadeh, A. Akbari, M. Drouet, Microstructure and wear properties of AISI M2 tool steel on RF plasma nitriding at different N2-H2 gas compositions, Surf. Coat. Technol 258 (2014) 566-573.

DOI: 10.1016/j.surfcoat.2014.08.036

Google Scholar

[13] M.M. Kumari, S. Natarajan, J. Alphonsa, S. Mukherjee, Dry sliding wear behaviour of plasma nitrocarburized AISI 304 stainless steel using response surface methodology, Surf. Eng. 26 (2009) 191-198.

DOI: 10.1179/174329409x439041

Google Scholar

[14] A. Triwiyanto, P. Hussain, M. Che Ismail, Behaviour of carbon and nitrogen after low temperature thermochemical treatment on austenitic and duplex stainless steel, Appl. Mech. Mater. 110-116 (2012) 621-626.

DOI: 10.4028/www.scientific.net/amm.110-116.621

Google Scholar

[15] M.M. Kumari, S. Natarajan, J. Alphonsa, S. Mukherjee, Dry sliding wear behaviour of plasma nitrocarburized AISI 304 stainless steel using response surface methodology, Surf. Eng. 26 (2009) 191-198.

DOI: 10.1179/174329409x439041

Google Scholar

[16] L.Q. Guo, M.C. Lin, L.J. Qiao, A.A. Volinsky, Ferrite and austenite phase identification in duplex stainless steel using SPM techniques, Appl. Surf. Sci. 287 (2013) 499-501.

DOI: 10.1016/j.apsusc.2013.09.041

Google Scholar

[17] M. Pellizzari, A. Molinari, G. Straffelini, Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steel, Mater. Sci. Eng. A 352 (2003) 186-194.

DOI: 10.1016/s0921-5093(02)00867-5

Google Scholar