[1]
H. Z Li, W. P Tong, J. J Cui, H. Zhang, L. Q Chen, L. Zuo, Heat treatment of centrifugally cast high vanadium alloy steel for high-pressure grinding roller, Acta Metall. Sin. (Engl. Lett. ) 27 (2014) 430-435.
DOI: 10.1007/s40195-014-0075-x
Google Scholar
[2]
A. Fossati, F. Borgioli, E. Galvanetto, T. Bacci, Corrosion resistance properties of glow discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions, Corros. Sci. 48 (2006) 1513-1527.
DOI: 10.1016/j.corsci.2005.06.006
Google Scholar
[3]
C.X. Li, T. Bell, Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel, Corros. Sci. 46 (2004) 1527-1547.
DOI: 10.1016/j.corsci.2003.09.015
Google Scholar
[4]
A.M. Abd El-Rahman, F.M. El-Hossary, T. Fitz, N.Z. Negm, F. Prokert, M.T. Pham, E. Richter, W. Moller, Effect of N2 to C2H2 ratio on r. f. plasma surface treatment of austenitic stainless steel, Surf. Coat. Technol. 183 (2004) 268-274.
DOI: 10.1016/j.surfcoat.2003.09.057
Google Scholar
[5]
B. Larisch, U. Brusky, H.J. Spies, Plasma nitriding of stainless steel at low temperatures, Surf. Coat. Technol. 116-119 (1999) 205-211.
DOI: 10.1016/s0257-8972(99)00084-5
Google Scholar
[6]
M. Pellizzari, A. Molinari, G. Straffelini, Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steel, Mater. Sci. Eng. A 352 (2003) 186-194.
DOI: 10.1016/s0921-5093(02)00867-5
Google Scholar
[7]
J. Mongis, J.P. Peyre, C. Tournier, Nitriding of microalloyed steels, Heat Treat. Met. 3 (1984) 71-75.
Google Scholar
[8]
B. Wang, S. H Sun, M. W Guo, G. F. Jin, Z. Zhou, W.T. Fu, Study on pressurized gas nitriding characteristics for steel 38CrMoAlA, Surf. Coat. Technol 279 (2015) 60-64.
DOI: 10.1016/j.surfcoat.2015.08.035
Google Scholar
[9]
N. Yasumaru, Low temperature ion nitriding of austenitic stainless steels, Mater. Trans. Jpn. Inst. Met. 39 (1998) 1046-1052.
DOI: 10.2320/matertrans1989.39.1046
Google Scholar
[10]
Y. Sun, Hybrid plasma surface alloying of austenitic stainless steels with nitrogen and carbon, Mater. Sci. Eng. A 404 (2005) 124-129.
DOI: 10.1016/j.msea.2005.05.061
Google Scholar
[11]
L. Maldzinski,W. Liliental, G. Tymowski, J. Tacikowski, New possibilities for controlling gas nitriding process by simulation of growth kinetics of nitride layers, Surf. Eng. 15 (1999) 377-384.
DOI: 10.1179/026708499101516740
Google Scholar
[12]
R. Mohammadzadeh, A. Akbari, M. Drouet, Microstructure and wear properties of AISI M2 tool steel on RF plasma nitriding at different N2-H2 gas compositions, Surf. Coat. Technol 258 (2014) 566-573.
DOI: 10.1016/j.surfcoat.2014.08.036
Google Scholar
[13]
M.M. Kumari, S. Natarajan, J. Alphonsa, S. Mukherjee, Dry sliding wear behaviour of plasma nitrocarburized AISI 304 stainless steel using response surface methodology, Surf. Eng. 26 (2009) 191-198.
DOI: 10.1179/174329409x439041
Google Scholar
[14]
A. Triwiyanto, P. Hussain, M. Che Ismail, Behaviour of carbon and nitrogen after low temperature thermochemical treatment on austenitic and duplex stainless steel, Appl. Mech. Mater. 110-116 (2012) 621-626.
DOI: 10.4028/www.scientific.net/amm.110-116.621
Google Scholar
[15]
M.M. Kumari, S. Natarajan, J. Alphonsa, S. Mukherjee, Dry sliding wear behaviour of plasma nitrocarburized AISI 304 stainless steel using response surface methodology, Surf. Eng. 26 (2009) 191-198.
DOI: 10.1179/174329409x439041
Google Scholar
[16]
L.Q. Guo, M.C. Lin, L.J. Qiao, A.A. Volinsky, Ferrite and austenite phase identification in duplex stainless steel using SPM techniques, Appl. Surf. Sci. 287 (2013) 499-501.
DOI: 10.1016/j.apsusc.2013.09.041
Google Scholar
[17]
M. Pellizzari, A. Molinari, G. Straffelini, Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steel, Mater. Sci. Eng. A 352 (2003) 186-194.
DOI: 10.1016/s0921-5093(02)00867-5
Google Scholar