Influence of Cu Doping on Martensitic and Magnetic Transitions in Ni-Mn-Sn Alloys

Article Preview

Abstract:

In this work, the fourth element Cu was introduced to substitute Ni in polycrystalline Ni-Mn-Sn alloys. It was shown that Cu doping did not change the crystal structure of the martensite in Ni50-xCuxMn39Sn11 (x=0, 1, ......,7) alloys, but resulted in the decrease of martensitic transformation temperatures. Due to the higher atomic radius of Cu with respect to that of Ni, the lattice volume of martensite unit cell increases with the gradual substitution of Ni by Cu. For the alloys with the Cu content of 0-4%, the martensitic transformation is from weak magnetic (paramagnetic) austenite to weak magnetic (paramagnetic) martensite. When the Cu content is higher than 4%, the paramagnetic to ferromagnetic transition of austenite was introduced. The temperature interval between magnetic transition and structural transformation was enlarged with the increase of Cu content. Due to the relatively smaller magnetization difference between austenite and martensite, the field induced inverse martensitic transformation behavior is not significant in the present Cu-doped alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1123-1128

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. C. Dunand, P. Müllner, Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys, Adv. Mater. 23 (2011) 216-232.

DOI: 10.1002/adma.201002753

Google Scholar

[2] A. Sozinov, N. Lanska, A. Soroka, W. Zou, 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite, Appl. Phys. Lett. 102 (2013) 021902.

DOI: 10.1063/1.4775677

Google Scholar

[3] H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov, H. J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals, Acta Mater. 54 (2006) 233-245.

DOI: 10.1016/j.actamat.2005.09.004

Google Scholar

[4] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Magnetic and martensitic transformations of NiMnX (X= In, Sn, Sb) ferromagnetic shape memory alloys, Appl. Phys. Lett. 85 (2004) 4358-4360.

DOI: 10.1063/1.1808879

Google Scholar

[5] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439 (2006) 957-960.

DOI: 10.1038/nature04493

Google Scholar

[6] R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, T. Kanomata, Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy, Appl. Phys. Lett. 88 (2006) 192513.

DOI: 10.1063/1.2203211

Google Scholar

[7] J. Liu, S. Aksoy, N. Scheerbaum, M. Acet, O. Gutfleisch, Large magnetostrain in polycrystalline Ni–Mn–In–Co, Appl. Phys. Lett. 95 (2009) 232515.

DOI: 10.1063/1.3273853

Google Scholar

[8] Z. Li, C. Jing, H. L. Zhang, D. H. Yu, L. Chen, B. J. Kang, S. X. Cao, J. C. Zhang, A large and reproducible metamagnetic shape memory effect in polycrystalline Ni45Co5Mn37In13 Heusler alloy, J. Appl. Phys. 108 (2010) 113908.

DOI: 10.1063/1.3516487

Google Scholar

[9] Z. Li, C. Jing, H. L. Zhang, Y. F. Qiao, S. X. Cao, J. C. Zhang, L. Sun, A considerable metamagnetic shape memory effect without any prestrain inNi46Cu4Mn38Sn12 Heusler alloy, J. Appl. Phys. 106 (2009) 083908.

DOI: 10.1063/1.3246809

Google Scholar

[10] P. J. Brown, A. PGandy, K. Ishida, R. Kainuma, T. Kanomata, K. U. Neumann, K. Oikawa, B. Ouladdiaf, K. R. A. Ziebeck, The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1. 44Sn0. 56, J. Phys.: Condens. Matter 18 (2006).

DOI: 10.1088/0953-8984/18/7/012

Google Scholar

[11] C. B Jiang, Y. Muhammad, L. F. Deng, W. Wu, H. B. Xu, Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys, Acta Mater. 52 (2004) 2779-2785.

DOI: 10.1016/j.actamat.2004.02.024

Google Scholar

[12] J. Enkovaara, O. Heczko, A. Ayuela, R. M. Nieminen, Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa, Phys. Rev. B 67 (2003) 212405.

DOI: 10.1103/physrevb.67.212405

Google Scholar

[13] J. M. Wang, P. P. Li, C. B. Jiang, Phase stability and magnetic properties of Ni50-xCuxMn31Ga19 alloys, Intermetallics 34 (2013) 14-17.

DOI: 10.1016/j.intermet.2012.11.003

Google Scholar

[14] Z. B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy, Acta Mater. 59 (2011) 3390-3397.

DOI: 10.1016/j.actamat.2011.02.014

Google Scholar

[15] L. Huang, D. Y. Cong, H. L. Suo, Y. D. Wang, Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy, Appl. Phys. Lett. 104 (2014) 132407.

DOI: 10.1063/1.4870771

Google Scholar