Deep Ultraviolet Photodetector Based on Sulphur-Doped Cubic Boron Nitride Thin Film

Article Preview

Abstract:

Cubic boron nitride (c-BN) is a wide bandgap III-V compound semiconductor potentially useful for solar-blind photodetectors. This paper describes work on the use of Sulphur doping to adjust the bandgap of c-BN films prepared by plasma-enhanced chemical vapor deposition (PECVD). An S-doped c-BN film based metal-semiconductor-metal (MSM) solar-blind ultraviolet (SBUV) photodetector was successfully fabricated and its electro-optical properties were characterized. The photocurrent shows peak responsivity at 254nm with sharp cutoff wavelengths at 220 and 300 nm, respectively, which is appropriate for use in solar-blind detection. The maximum response reached 1.55×10-7 A/W/cm2 with a rejection ratio of more than three orders of magnitude. The high solar-blind region UV response could be attributed to the successful substitution of boron by Sulphur and the suppression of B vacancies. The experimental results show the same peak in response at around 254nm as is found in the theoretical analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1117-1122

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Tut, M. Gokkavas, A. Inal, and E. Ozbay, Appl. Phys. Lett. 90, 163506 (2007).

Google Scholar

[2] M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996).

Google Scholar

[3] E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18, R33 (2003).

Google Scholar

[4] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S.B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett. 75, 247 (1999).

DOI: 10.1063/1.124337

Google Scholar

[5] M. Liao, Y. Koide, and J. Alvarez, Appl. Phys. Lett. 90, 123507 (2007).

Google Scholar

[6] X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang,Q. K. Xue, and A. Yu. Kuznetsov, Adv. Mater. 21, 4625 (2009).

Google Scholar

[7] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, and T. Venkatesan, Appl. Phys. Lett. 82, 3424 (2003).

Google Scholar

[8] K. Koike, K. Hama, I. Nakashima, G. -y. Takada, K. -i. Ogata, S. Sasa, M. Inoue, and M. Yano, J. Cryst. Growth 278, 288 (2005).

Google Scholar

[9] H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors, Appl. Phys. Lett. 98, 221902 (2011).

DOI: 10.1063/1.3595342

Google Scholar

[10] M. M. Fan, K. W. Liu, Z. Z. Zhang, B. H. Li, X. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film, Appl. Phys. Lett. 105, 011117 (2014).

DOI: 10.1063/1.4889914

Google Scholar

[11] Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, MgXZn1−XO-based photodetectors covering the whole solar-blind spectrum range, Appl. Phys. Lett. 93, 173505 (2008).

DOI: 10.1063/1.3002371

Google Scholar

[12] M. Fujita, M. Sasajima, Y. Deesirapipat, and Y. Horikosh, J. Cryst. Growth 278, 293(2005).

Google Scholar

[13] L. W. Sang, M. Y. Liao, M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures, Sensors, 13 (2013) 10482-10518.

DOI: 10.3390/s130810482

Google Scholar

[14] M. S. Shur, M. A. Khan, GaN/AIGaNheterostructure devices: photodetectors and field-effect transistors, MRS Bulletin, 22 (1997) 44-50.

DOI: 10.1557/s0883769400032565

Google Scholar

[15] C. W. Litton, P. J. Schreiber, G. A. Smith, T. Dang, H. Morkoc, Design requirements for high-sensitivity UV solar blind imaging detectors based on AlGaN/GaN photodetector arrays: a review, Proc. SPIE, Materials for Infrared Detectors, 4454 (2001).

DOI: 10.1117/12.448177

Google Scholar

[16] A. Soltani, H.A. Barkad, M. Mattalah, B. Benbakhti, J. -C. De Jaeger, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, A. BenMoussa, B. Giordanengo, J. -F. Hochedez, Appl. Phys. Lett. 92 (2008) 053501.

DOI: 10.1063/1.2840178

Google Scholar

[17] K. J. Liao, W. L. Wang, C. Z. Cai, X. S. Wang, and C. Y. Kong, UV Photodetectors of cBN films, Int. J. Mod. Phys. B, 16 (2002) 1115-1119.

DOI: 10.1142/s0217979202010968

Google Scholar

[18] L. Vel and G. Demazeau: Mater. Sci. Eng. B Vol. 10 (1991), p.149.

Google Scholar

[19] T. Yoshida: Diamond Relat. Mater. Vol. 5 (1996), p.501.

Google Scholar

[20] P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin: Mater. Sci. Eng. R Vol. 21 (1997), p.47.

Google Scholar

[21] C. B. Samantaray and R. N. Singh: Int. Mater. Rev. Vol. 50 (2005), p.313.

Google Scholar

[22] T. Taniguchi, T. Teraji, S. Koizumi, K. Watanabe, S. Yamaoka, Jpn. J. Appl. Phys. 41 (2002) L109.

Google Scholar

[23] H. Tomokage, N. Nomura, T. Taniguchi, T. Ando, Diamond Relat. Mater. 9 (2000) 606.

Google Scholar

[24] X.W. Zhang, Y.J. Zou, H. Yan, B. Wang, G.H. Chen, S.P. Wong, Mater. Lett. 45 (2000) 111.

Google Scholar

[25] K.J. Liao W.L. Wang, C.Y. Kong, Surf. Coat. Technol. 141 (2001) 216.

Google Scholar

[26] C. Kimura, T. Yamamoto, T. Sugino, Diamond Relat. Mater. 10 (2001) 1404.

Google Scholar

[27] C. Ronning, E. Dreher, H. Feldermann, M. Gross, M. Sebastian, H. Hofs7ss, Diamond Relat. Mater. 6 (1997) 1129.

Google Scholar

[28] D. Litvinov, C.A. Taylor, R. Clarke, Diamond Relat. Mater. 7 (1998) 360.

Google Scholar

[29] D. Litvinov, R. Clarke, Appl. Phys. Lett. 71 (1997) (1969).

Google Scholar

[30] J. Ying, X. W. Zhang, Z. G. Yin, H. R. Tan, S. G. Zhang, and Y. M. Fan, Electrical transport properties of the Si-doped cubic boron nitride thin films prepared by in situ cosputtering, J. Appl. Phys. 109, 023716 (2011).

DOI: 10.1063/1.3544065

Google Scholar

[31] V. A. Gubanov, E. A. Pentaleri, C. Y. Fong, and B. M. Klein, Electronic structure of defects and impurities in III-V nitrides. II. Be, Mg, and Si in cubic boron nitride, Phys. Rev. B 56, 13077-13086 (1997).

DOI: 10.1103/physrevb.56.13077

Google Scholar

[32] B. He, W. J. Zhang, Y. S. Zou, Y. M. Chong, Q. Ye, A. L. Ji, Y. Yang, I. Bello, S. T. Lee, and G. H. Chen, Electrical properties of Be-implanted polycrystalline cubic boron nitride films, Appl. Phys. Lett. 92, 102108 (2008).

DOI: 10.1063/1.2896643

Google Scholar

[33] Y. B. Li, T. Y. Cheng, X. Wang, H. X. Jiang, H. S. Yang, K. Nose, Structural and electronic properties of cubic boron nitride doped with zinc, J. Appl. Phys. 116 (2014) 043507.

DOI: 10.1063/1.4890607

Google Scholar

[34] Y. B. Li, H. X. Jiang, G. Z. Yuan, A. L. Chen, X. Wang, T. G. Dai, H. S. Yang, Electronic structure and impurity states of S-doped cBN: A first-principle study, J. AlloyCompd, 531 (2012) 82-85.

DOI: 10.1016/j.jallcom.2012.04.002

Google Scholar

[35] Y. B. Li, X. Wang, T. G. Dai, G. Y. Yuan, H. S. Yang, First-principle study of vacancy-induced cubic boronnitride electronic structure and opticalproperty changes, Acta Phys. Sin., 62 (2013) 074201.

Google Scholar