[1]
T. Tut, M. Gokkavas, A. Inal, and E. Ozbay, Appl. Phys. Lett. 90, 163506 (2007).
Google Scholar
[2]
M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996).
Google Scholar
[3]
E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18, R33 (2003).
Google Scholar
[4]
G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S.B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett. 75, 247 (1999).
DOI: 10.1063/1.124337
Google Scholar
[5]
M. Liao, Y. Koide, and J. Alvarez, Appl. Phys. Lett. 90, 123507 (2007).
Google Scholar
[6]
X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang,Q. K. Xue, and A. Yu. Kuznetsov, Adv. Mater. 21, 4625 (2009).
Google Scholar
[7]
W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, and T. Venkatesan, Appl. Phys. Lett. 82, 3424 (2003).
Google Scholar
[8]
K. Koike, K. Hama, I. Nakashima, G. -y. Takada, K. -i. Ogata, S. Sasa, M. Inoue, and M. Yano, J. Cryst. Growth 278, 288 (2005).
Google Scholar
[9]
H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors, Appl. Phys. Lett. 98, 221902 (2011).
DOI: 10.1063/1.3595342
Google Scholar
[10]
M. M. Fan, K. W. Liu, Z. Z. Zhang, B. H. Li, X. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film, Appl. Phys. Lett. 105, 011117 (2014).
DOI: 10.1063/1.4889914
Google Scholar
[11]
Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, MgXZn1−XO-based photodetectors covering the whole solar-blind spectrum range, Appl. Phys. Lett. 93, 173505 (2008).
DOI: 10.1063/1.3002371
Google Scholar
[12]
M. Fujita, M. Sasajima, Y. Deesirapipat, and Y. Horikosh, J. Cryst. Growth 278, 293(2005).
Google Scholar
[13]
L. W. Sang, M. Y. Liao, M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures, Sensors, 13 (2013) 10482-10518.
DOI: 10.3390/s130810482
Google Scholar
[14]
M. S. Shur, M. A. Khan, GaN/AIGaNheterostructure devices: photodetectors and field-effect transistors, MRS Bulletin, 22 (1997) 44-50.
DOI: 10.1557/s0883769400032565
Google Scholar
[15]
C. W. Litton, P. J. Schreiber, G. A. Smith, T. Dang, H. Morkoc, Design requirements for high-sensitivity UV solar blind imaging detectors based on AlGaN/GaN photodetector arrays: a review, Proc. SPIE, Materials for Infrared Detectors, 4454 (2001).
DOI: 10.1117/12.448177
Google Scholar
[16]
A. Soltani, H.A. Barkad, M. Mattalah, B. Benbakhti, J. -C. De Jaeger, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, A. BenMoussa, B. Giordanengo, J. -F. Hochedez, Appl. Phys. Lett. 92 (2008) 053501.
DOI: 10.1063/1.2840178
Google Scholar
[17]
K. J. Liao, W. L. Wang, C. Z. Cai, X. S. Wang, and C. Y. Kong, UV Photodetectors of cBN films, Int. J. Mod. Phys. B, 16 (2002) 1115-1119.
DOI: 10.1142/s0217979202010968
Google Scholar
[18]
L. Vel and G. Demazeau: Mater. Sci. Eng. B Vol. 10 (1991), p.149.
Google Scholar
[19]
T. Yoshida: Diamond Relat. Mater. Vol. 5 (1996), p.501.
Google Scholar
[20]
P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin: Mater. Sci. Eng. R Vol. 21 (1997), p.47.
Google Scholar
[21]
C. B. Samantaray and R. N. Singh: Int. Mater. Rev. Vol. 50 (2005), p.313.
Google Scholar
[22]
T. Taniguchi, T. Teraji, S. Koizumi, K. Watanabe, S. Yamaoka, Jpn. J. Appl. Phys. 41 (2002) L109.
Google Scholar
[23]
H. Tomokage, N. Nomura, T. Taniguchi, T. Ando, Diamond Relat. Mater. 9 (2000) 606.
Google Scholar
[24]
X.W. Zhang, Y.J. Zou, H. Yan, B. Wang, G.H. Chen, S.P. Wong, Mater. Lett. 45 (2000) 111.
Google Scholar
[25]
K.J. Liao W.L. Wang, C.Y. Kong, Surf. Coat. Technol. 141 (2001) 216.
Google Scholar
[26]
C. Kimura, T. Yamamoto, T. Sugino, Diamond Relat. Mater. 10 (2001) 1404.
Google Scholar
[27]
C. Ronning, E. Dreher, H. Feldermann, M. Gross, M. Sebastian, H. Hofs7ss, Diamond Relat. Mater. 6 (1997) 1129.
Google Scholar
[28]
D. Litvinov, C.A. Taylor, R. Clarke, Diamond Relat. Mater. 7 (1998) 360.
Google Scholar
[29]
D. Litvinov, R. Clarke, Appl. Phys. Lett. 71 (1997) (1969).
Google Scholar
[30]
J. Ying, X. W. Zhang, Z. G. Yin, H. R. Tan, S. G. Zhang, and Y. M. Fan, Electrical transport properties of the Si-doped cubic boron nitride thin films prepared by in situ cosputtering, J. Appl. Phys. 109, 023716 (2011).
DOI: 10.1063/1.3544065
Google Scholar
[31]
V. A. Gubanov, E. A. Pentaleri, C. Y. Fong, and B. M. Klein, Electronic structure of defects and impurities in III-V nitrides. II. Be, Mg, and Si in cubic boron nitride, Phys. Rev. B 56, 13077-13086 (1997).
DOI: 10.1103/physrevb.56.13077
Google Scholar
[32]
B. He, W. J. Zhang, Y. S. Zou, Y. M. Chong, Q. Ye, A. L. Ji, Y. Yang, I. Bello, S. T. Lee, and G. H. Chen, Electrical properties of Be-implanted polycrystalline cubic boron nitride films, Appl. Phys. Lett. 92, 102108 (2008).
DOI: 10.1063/1.2896643
Google Scholar
[33]
Y. B. Li, T. Y. Cheng, X. Wang, H. X. Jiang, H. S. Yang, K. Nose, Structural and electronic properties of cubic boron nitride doped with zinc, J. Appl. Phys. 116 (2014) 043507.
DOI: 10.1063/1.4890607
Google Scholar
[34]
Y. B. Li, H. X. Jiang, G. Z. Yuan, A. L. Chen, X. Wang, T. G. Dai, H. S. Yang, Electronic structure and impurity states of S-doped cBN: A first-principle study, J. AlloyCompd, 531 (2012) 82-85.
DOI: 10.1016/j.jallcom.2012.04.002
Google Scholar
[35]
Y. B. Li, X. Wang, T. G. Dai, G. Y. Yuan, H. S. Yang, First-principle study of vacancy-induced cubic boronnitride electronic structure and opticalproperty changes, Acta Phys. Sin., 62 (2013) 074201.
Google Scholar