[1]
Pollock, T.M., Weight loss with magnesium alloys, Sci., 328, (2010), 986-987.
Google Scholar
[2]
Rohatgi, P., Cast aluminum-matrix composites for automotive applications, JOM, 43, (1991), 10-15.
DOI: 10.1007/bf03220538
Google Scholar
[3]
Williams, J.C. and E.A. Starke Jr, Progress in structural materials for aerospace systems, Acta Mater., 51, (2003), 5775-5799.
Google Scholar
[4]
Heinz, A., A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A, 280, (2000), 102-107.
DOI: 10.1016/s0921-5093(99)00674-7
Google Scholar
[5]
Prasad, S.V. and R. Asthana, Aluminum metal-matrix composites for automotive applications: Tribological considerations, Tribology Lett., 17, (2004), 445-453.
DOI: 10.1023/b:tril.0000044492.91991.f3
Google Scholar
[6]
Javidani, M. and D. Larouche, Application of cast Al–Si alloys in internal combustion engine components, Int. Mater. Rev., 59, (2014), 132-158.
DOI: 10.1179/1743280413y.0000000027
Google Scholar
[7]
Kaufman, J.G. and E.L. Rooy, Aluminum alloy castings: Properties, processes, and applications. Materials Park, OH: ASM International, 2004). p.340.
Google Scholar
[8]
Lee, H. -k., S. -h. Park, and C. -Y. Kang, Effect of plasma current on surface defects of plasma-MIG welding in cryogenic aluminum alloys, J. Mater. Process. Tech., 223, (2015), 203-215.
DOI: 10.1016/j.jmatprotec.2015.04.008
Google Scholar
[9]
Zhang, L., X. Li, Z. Nie, H. Huang, and L. Niu, Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al–Zn–Mg–Cu alloy, Mater. Design, 92, (2016), 880-887.
DOI: 10.1016/j.matdes.2015.12.117
Google Scholar
[10]
Mishra, R.S. and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50, (2005), 1-78.
Google Scholar
[11]
Threadgill, P.L., A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction stir welding of aluminium alloys, Int. Mater. Rev., 54, (2009), 49-93.
DOI: 10.1179/174328009x411136
Google Scholar
[12]
Mishra, R., P. De, and N. Kumar, Friction stir welding of magnesium alloys, in Friction stir welding and processing. Springer International Publishing: Cham, Switzerland. 2014, pp.149-187.
DOI: 10.1007/978-3-319-07043-8_6
Google Scholar
[13]
Mishra, R., P. De, and N. Kumar, FSW of aluminum alloys, in Friction stir welding and processing. Springer International Publishing: Cham, Switzerland. 2014, pp.109-148.
DOI: 10.1007/978-3-319-07043-8_5
Google Scholar
[14]
Russell, M.J., C. Blignault, N.L. Horrex, and C.S. Wiesner, Recent developments in the friction stir welding of titanium alloys, Weld. in the World, 52, (2008), 12-15.
DOI: 10.1007/bf03266662
Google Scholar
[15]
Lee, W. -B. and S. -B. Jung, The joint properties of copper by friction stir welding, Mater. Lett., 58, (2004), 1041-1046.
DOI: 10.1016/j.matlet.2003.08.014
Google Scholar
[16]
Ye, F., H. Fujii, T. Tsumura, and K. Nakata, Friction stir welding of Inconel alloy 600, J. Mater. Sci., 41, (2006), 5376-5379.
DOI: 10.1007/s10853-006-0169-6
Google Scholar
[17]
Mishra, R., P. De, and N. Kumar, Friction stir welding of high temperature alloys, in Friction stir welding and processing. Springer International Publishing: Cham, Switzerland. 2014, pp.189-235.
DOI: 10.1007/978-3-319-07043-8_7
Google Scholar
[18]
Murr, L.E., A review of FSW research on dissimilar metal and alloy systems, J. Mater. Eng. Perform., 19, (2010), 1071-1089.
DOI: 10.1007/s11665-010-9598-0
Google Scholar
[19]
Mishra, R., P. De, and N. Kumar, Dissimilar metal friction stir welding, in Friction Stir Welding and Processing. Springer International Publishing: Cham, Switzerland. 2014, pp.237-258.
DOI: 10.1007/978-3-319-07043-8_8
Google Scholar