[1]
S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85 %) solder in the electronics industry: RoHS exemptions and alternatives, J Mater Sci: Mater Electron (2015) 26: 4021–4030.
DOI: 10.1007/s10854-015-2940-4
Google Scholar
[2]
C. M. Zetterling, L. Lanni, R. Ghandi, B. G. Malm, and M. Östling Future high temperature applications for SiC integrated circuits, Phys. Status Solidi C 9, No. 7, (2012) 1647-1650.
DOI: 10.1002/pssc.201100689
Google Scholar
[3]
Karsten Guth, Dirk Siepe, Jens Görlich, Holger Torwesten, Roman Roth, Frank Hille and Frank Umbach, New assembly and interconnects beyond sintering methods, Power Conversion Intelligent Motion Europe 2010, Berlin (2010) 232-237.
Google Scholar
[4]
T Fujimoto, S Fukumoto, T Miyazaki, Y Kashiba, K Shiotani and K Fujimoto, Bonding of copper to silicon chips using vapor-deposited tin film, Journal of Physics: Conference Series, Vol. 379 (2012) 1-7.
DOI: 10.1088/1742-6596/379/1/012026
Google Scholar
[5]
J.F. Li, P.A. Agyakwa and C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process, Acta Materialia, Vol. 59, No. 3(2011)1198-1211.
DOI: 10.1016/j.actamat.2010.10.053
Google Scholar
[6]
J.F. Li, P.A. Agyakwa and C.M. Johnson, Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process, Acta Materialia, Vol. 58, No. 9(2010)3429-3443.
DOI: 10.1016/j.actamat.2010.02.018
Google Scholar
[7]
A. Hirose, N. Takeda, H. Tatsumi, Y. Akada, T. Ogura, E. Ide and T. Morida, Low Temperature Sintering Bonding Process Using Ag Nanoparticles Derived from Ag2O for Packaging of High-temperature Electronics, Materials Science Forum, Vol. 706-709 (2012).
DOI: 10.4028/www.scientific.net/msf.706-709.2962
Google Scholar
[8]
J. Lenkkeri and O. Rusanen, Conductive adhesive s as die-bonding materials for power electric modules, Journal of Electronics Manufacturing 03, (1993), p.199.
DOI: 10.1142/s0960313193000218
Google Scholar
[9]
U. Eitner, T. Geipel, S-N. Holtschke, M. Tranitz, Characterization of electrically conductive adhesives, Energy Procedia, 27, (2012), pp.676-679.
DOI: 10.1016/j.egypro.2012.07.128
Google Scholar
[10]
Yi Li, C.P. Wong, Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications, Materials Science and Engineering: R: Reports, 51(30), (2006), pp.1-35.
DOI: 10.1016/j.mser.2006.01.001
Google Scholar
[11]
M. Matsushima, N. Nakashima, T. Fujimoto, S. Fukumoto, K. Fujimoto, Effects of material property and structural design on the stress reduction of the joints in electronics devices, Materials Science Forum, Vols. 783-786, (2014), pp.2765-2770.
DOI: 10.4028/www.scientific.net/msf.783-786.2765
Google Scholar
[12]
R.J. Fields and S.R. Low, Physical and Mechanical Properties of Intermetallic Compounds Commonly Found in Solder Joints, The Metal science of joining (1991) 165-174.
Google Scholar
[13]
G. L Pearson, W. T Read Jr. and W. L Feldmann, Deformation and fracture of small silicon crystals, Acta Metallurgica, Vol. 5, No. 4 (1957) 181-191.
DOI: 10.1016/0001-6160(57)90164-5
Google Scholar
[14]
X. Deng, N. Chawla, K.K. Chawla and M. Koopman, Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation, Acta Materialia, Vol. 52, No. 14, (2004), 4291-4303.
DOI: 10.1016/j.actamat.2004.05.046
Google Scholar
[15]
S. Wakasugi, Y. Nishi, Y. Goto and T. Furukawa, Constitutive Relations between Stress, Strain-Rate and Temperature of Copper, Transactions of the Japan Society of Mechanical Engineers A Vol. 56, No. 530, (1990), 2152-2156.
DOI: 10.1299/kikaia.56.2152
Google Scholar