Oxidation of Fe-Al Alloys (5-40 at.% Al) at 700 and 900 °C

Article Preview

Abstract:

Fe-Al alloys with Al contents between 5 and 40 at.% Al were oxidised for 1000 h in synthetic air at 700 and 900 °C to determine their oxidation behaviour. The minimum Al content which is necessary for the formation of protective Al2O3 scales decreases with increasing temperature from about 17 at.% Al at 700 °C to about 12 at.% Al at 900 °C. Established parabolic rate constants for the steady state growth of Al2O3 indicate formation of γ-Al2O3 at 700 °C while at 900 °C α-Al2O3 + Θ-Al2O3 scales form. At lower Al contents scales are predominantly formed by Fe2O3 as revealed by GI-XRD. It is also found that the oxidation behaviour is independent of the crystallographic order of the alloys, i.e. whether they are disordered A2 or ordered B2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1245-1250

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G. Morris, M.A. Munoz-Morris, Adv. Eng. Mater. 13 (2011) 43-47.

Google Scholar

[2] H. Hindam, D.P. Whittle, Oxid. Met. 18 (1982) 245-284.

Google Scholar

[3] R. Prescott, M.J. Graham, Oxid. Met. 38 (1992) 73-87.

Google Scholar

[4] K. Wefers, C. Misra, Oxides and hydroxides of aluminum, Alcoa Technical Paper No. 19 (1987) pp.1-92.

Google Scholar

[5] H.J. Grabke, Intermetallics 7 (1999) 1153-1158.

Google Scholar

[6] I. Rommerskirchen, Oxidationsverhalten von b-NiAl und b-FeAl sowie Fe-Al-Legierungen, Fortschritt-Berichte VDI Verlag Series 5, No. 422 (1996) pp.1-93.

Google Scholar

[7] F. Lang, Z. Yu, S. Gedevanishvili, S.C. Deevi, T. Narita, Intermetallics 11 (2003) 697-705.

DOI: 10.1016/s0966-9795(03)00067-0

Google Scholar

[8] D. Das, D.R. Balasubramaniam, M.N. Mungole, J. Mater. Sci. 37 (2002) 1135-1142.

Google Scholar

[9] F. Stein, M. Palm, Int. J . Mater. Res. 98 (2007) 580-588.

Google Scholar

[10] P. Tomaszewicz, G. Wallwork, Rev. High-Temp. Mater. 4 (1978) 75-104.

Google Scholar

[11] K. Natesan, Mater. Sci. Eng. A258 (1998) 126-134.

Google Scholar

[12] M.W. Brumm, H.J. Grabke, Corr. Sci. 33 (1992) 1677-1690.

Google Scholar

[13] H.J. Grabke, M.W. Brumm, B. Wagemann, The oxidation of NiAl and FeAl in: H.J. Grabke, M. Schütze (Eds. ), Oxidation of Intermetallics, Wiley-VCH, Weinheim, 1998, pp.79-83.

DOI: 10.1002/9783527612413.ch04

Google Scholar

[14] I. Rommerskirchen, B. Eltester, H.J. Grabke, Mater. Corr. 47 (1996) 646-649.

Google Scholar

[15] J.H. DeVan, P.F. Tortorelli, Corr. Sci. 35 (1993) 1065-1071.

Google Scholar

[16] I. Kim, W.D. Cho, H.J. Kim, J. Mater. Sci. 35 (2000) 4695-4703.

Google Scholar

[17] C. Dang Ngoc Chan, C. Huvier, J.F. Dinhut, Intermetallics 9 (2001) 817-826.

DOI: 10.1016/s0966-9795(01)00065-6

Google Scholar

[18] Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita, S. Ukai, Oxid. Met. 73 (2010) 375-388.

Google Scholar

[19] P.F. Tortorelli, J.H. DeVan, Mater. Sci. Eng. A153 (1992) 573-577.

Google Scholar