On the Elaboration of Metal-Ceramic Composite Coatings by Laser Cladding

Article Preview

Abstract:

This paper reports on a preliminary investigation into the elaboration, by the additive process known as laser cladding, of composite coatings with a matrix of stainless steel 316L reinforced with varying contents of tungsten (WC) or silicon carbides (SiC) particles. Laser cladding is characterised by ultra-fast solidification and cooling rates, thus giving rise to ultra-fine out-of-equilibrium microstructures and potentially enhanced mechanical properties. Both types of composite coatings – i.e. with SiC or WC ‒ are compared in terms of their microstructures and hardness. Special attention is given to the dissolution of the carbides particles and to interfacial reactions taking place between the particles and the metallic matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1288-1293

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, J. Mater. Process. Technol. 213 (2013) 606-613.

DOI: 10.1016/j.jmatprotec.2012.11.014

Google Scholar

[2] J. Dutta Majumdar, A. Kumar, L. Li, Direct laser cladding of SiC dispersed AISI 316L stainless steel, Tribol. Int. 42 (2009) 750-753.

DOI: 10.1016/j.triboint.2008.10.016

Google Scholar

[3] J.C. Betts, B.L. Mordike, M. Grech, Characterisation, wear and corrosion testing of laser-deposited AISI 316 reinforced with ceramic particles, Surface Eng. 26 (2010) 21-29.

DOI: 10.1179/174329409x433920

Google Scholar

[4] G. Abbas, U. Ghazanfar, Two-body abrasive wear studies of laser produced stainless steel and stainless steel + SiC composite clads, Wear 258 (2005) 258-264.

DOI: 10.1016/j.wear.2004.09.036

Google Scholar

[5] G. Thawari, G. Sundararjan, S.V. Joshi, Laser surface alloying of medium carbon steel with SiC(p), Thin Solid Films 423 (2003) 41-53.

DOI: 10.1016/s0040-6090(02)00974-4

Google Scholar

[6] A. Mertens, S. Reginster, Q. Contrepois, T. Dormal, O. Lemaire, J. Lecomte-Beckers, Microstructures and mechanical properties of stainless steel AISI 316L processed by Selective Laser Melting, Mater. Sci. Forum 783-786 (2014) 898-903.

DOI: 10.4028/www.scientific.net/msf.783-786.898

Google Scholar

[7] M. Marya, V. Singh, S. Marya, J.Y. Hascoet, Microstructural development and technical challenges in laser additive manufacturing: case study with a 316L industrial part, Metall. Mater; Trans. B 46 (2015) 1654-1665.

DOI: 10.1007/s11663-015-0310-5

Google Scholar

[8] P. Xu, C. Lin, C. Zhou, X. Yi, Wear and corrosion resistance of laser cladding AISI304 stainless steel/Al2O3 composite coatings, Surf. Coat. Tech. 238 (2014) 9-14.

DOI: 10.1016/j.surfcoat.2013.10.028

Google Scholar

[9] K.H. Lo, F.T. Cheng, C.T. Kwok, H.C. Man, Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder, Surf. Coat. Tech. 165 (2003) 258-267.

DOI: 10.1016/s0257-8972(02)00739-9

Google Scholar

[10] T. L'Hoest, Réalisation de dépôts composites métal/céramique par laser cladding, Master Thesis, University of Liege (Belgium), (2015).

Google Scholar

[11] Y. Zhong, L. Liu, D. Cui, Z. Shen, Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting, J. Nucl. Mater. 470 (2016) 170-178.

DOI: 10.1016/j.jnucmat.2015.12.034

Google Scholar

[12] H. Paydas, A. Mertens, R. Carrus, J. Lecomte-Beckers, J.T. Tchuindjang, Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness, Mater. Design 85 (2015) 497-510.

DOI: 10.1016/j.matdes.2015.07.035

Google Scholar

[13] U. Savitha, G. Jagan Reddy, A. Venkataramana, A.A. Gokhale, M. Sundararaman, Effect of process parameters on solidification structure and properties of laser deposited SS316 alloy, T. Indian I. Metals 68 (2015) 1017-1022.

DOI: 10.1007/s12666-015-0638-1

Google Scholar

[14] F. Delannay, Thermal stresses and thermal expansion in metal matrix composites, Reference Module in Materials Science and Materials Engineering, Elsevier, 2016, doi: 10. 1016/B978-0-12-803581-8. 03874-1.

Google Scholar