[1]
I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, J. Mater. Process. Technol. 213 (2013) 606-613.
DOI: 10.1016/j.jmatprotec.2012.11.014
Google Scholar
[2]
J. Dutta Majumdar, A. Kumar, L. Li, Direct laser cladding of SiC dispersed AISI 316L stainless steel, Tribol. Int. 42 (2009) 750-753.
DOI: 10.1016/j.triboint.2008.10.016
Google Scholar
[3]
J.C. Betts, B.L. Mordike, M. Grech, Characterisation, wear and corrosion testing of laser-deposited AISI 316 reinforced with ceramic particles, Surface Eng. 26 (2010) 21-29.
DOI: 10.1179/174329409x433920
Google Scholar
[4]
G. Abbas, U. Ghazanfar, Two-body abrasive wear studies of laser produced stainless steel and stainless steel + SiC composite clads, Wear 258 (2005) 258-264.
DOI: 10.1016/j.wear.2004.09.036
Google Scholar
[5]
G. Thawari, G. Sundararjan, S.V. Joshi, Laser surface alloying of medium carbon steel with SiC(p), Thin Solid Films 423 (2003) 41-53.
DOI: 10.1016/s0040-6090(02)00974-4
Google Scholar
[6]
A. Mertens, S. Reginster, Q. Contrepois, T. Dormal, O. Lemaire, J. Lecomte-Beckers, Microstructures and mechanical properties of stainless steel AISI 316L processed by Selective Laser Melting, Mater. Sci. Forum 783-786 (2014) 898-903.
DOI: 10.4028/www.scientific.net/msf.783-786.898
Google Scholar
[7]
M. Marya, V. Singh, S. Marya, J.Y. Hascoet, Microstructural development and technical challenges in laser additive manufacturing: case study with a 316L industrial part, Metall. Mater; Trans. B 46 (2015) 1654-1665.
DOI: 10.1007/s11663-015-0310-5
Google Scholar
[8]
P. Xu, C. Lin, C. Zhou, X. Yi, Wear and corrosion resistance of laser cladding AISI304 stainless steel/Al2O3 composite coatings, Surf. Coat. Tech. 238 (2014) 9-14.
DOI: 10.1016/j.surfcoat.2013.10.028
Google Scholar
[9]
K.H. Lo, F.T. Cheng, C.T. Kwok, H.C. Man, Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder, Surf. Coat. Tech. 165 (2003) 258-267.
DOI: 10.1016/s0257-8972(02)00739-9
Google Scholar
[10]
T. L'Hoest, Réalisation de dépôts composites métal/céramique par laser cladding, Master Thesis, University of Liege (Belgium), (2015).
Google Scholar
[11]
Y. Zhong, L. Liu, D. Cui, Z. Shen, Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting, J. Nucl. Mater. 470 (2016) 170-178.
DOI: 10.1016/j.jnucmat.2015.12.034
Google Scholar
[12]
H. Paydas, A. Mertens, R. Carrus, J. Lecomte-Beckers, J.T. Tchuindjang, Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness, Mater. Design 85 (2015) 497-510.
DOI: 10.1016/j.matdes.2015.07.035
Google Scholar
[13]
U. Savitha, G. Jagan Reddy, A. Venkataramana, A.A. Gokhale, M. Sundararaman, Effect of process parameters on solidification structure and properties of laser deposited SS316 alloy, T. Indian I. Metals 68 (2015) 1017-1022.
DOI: 10.1007/s12666-015-0638-1
Google Scholar
[14]
F. Delannay, Thermal stresses and thermal expansion in metal matrix composites, Reference Module in Materials Science and Materials Engineering, Elsevier, 2016, doi: 10. 1016/B978-0-12-803581-8. 03874-1.
Google Scholar