Impact of the Confinement on the Intra-Cage Dynamics of Molecular Hydrogen in Clathrate Hydrates

Article Preview

Abstract:

We have studied the diffusive mobility of hydrogen molecules confined in different size cages in clathrate hydrates. In clathrate hydrate H2 molecules are effectively stored by confinement in two different size cages of the nanoporous host structure with accessible volumes of about 0.50 and 0.67 nm diameters, respectively. For the processes of sorption and desorption of the stored hydrogen the diffusive mobility of the molecules plays a fundamental role. In the present study we have focused on the dynamics of the H2 molecules inside the cages as one aspect of global guest molecule mobility across the crystalline host structure. We have found that for the two cage sizes different in diameter by only 34 % and in volume by about a factor of 2.4, the dimension can modify the diffusive mobility of confined hydrogen in both directions, i.e. reducing and surprisingly enhancing mobility compared to the bulk at the same temperature. In the smaller cages of clathrate hydrates hydrogen molecules are localized in the center of the cages even at temperatures >100 K. Confinement in the large cages leads to the onset already at T=10 K of jump diffusion between sorption sites separated from each other by about 2.9 Å at the 4 corners of a tetrahedron. At this temperature bulk hydrogen is frozen at ambient pressure and shows no molecular mobility on the same time scale. A particular feature of this diffusive mobility is the pronounced dynamic heterogeneity: only a temperature dependent fraction of the H2 molecules was found mobile on the time scale covered by the neutron spectrometer used. The differences in microscopic dynamics inside the cages of two different sizes can help to explain the differences in the parameters of macroscopic mobility: trapping of hydrogen molecules in smaller pores matching the molecule size can to play a role in the higher desorption temperature for the small cages.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1294-1299

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.A. Dyadin, E.G. Larionov, A.Y. Manakov, Mendeleev Commun. 5, (1999) 209.

Google Scholar

[2] E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, CRC Press, Boca Raton (2008).

Google Scholar

[3] W.L. Mao, H.K. Mao, A.F. Goncharov et al, Science 297 (2002) 2247.

Google Scholar

[4] K.A. Lokshin,Y. Zhao. D. He et al, Phys. Rev. Lett., 93 (2004) 125503.

Google Scholar

[5] H. Lee, J.W. Lee, D.Y. Kim, J. Park et al, Nature, 434 (2005) 743.

Google Scholar

[6] G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, third ed., Cambridge University Press, Cambridge, (2012).

Google Scholar

[7] L. Ulivi, M. Celli, A. Giannasi, Phys. Rev. B, 76 (2007) 161401.

Google Scholar

[8] M. Xu, Y. S. Elmatad, F. Sebastianelli, J.W. Moskowitz, and Z. Bačić, 2006, J. Phys. Chem. B. Letters, 110 (2006) 24806.

Google Scholar

[9] M. Russina, E. Kemner, M. Cellie, L. Ulivi, F. Mezei, J. Physics, 177, (2009) 012013.

Google Scholar

[10] D. Colognesi, M. Celli, L. Ulivi, M. Xu, Z. Bačić, J. Phys. Chem. A, 117 (2013) 7314.

Google Scholar

[11] S. Alavi, J.A. Ripmeester, Angew. Chem., Int. Ed. 46 (2007) 6102.

Google Scholar

[12] L. Senadheera, M.S. Conradi, J. Phys. Chem. B 111 (2007)12097.

Google Scholar

[13] T. Okuchi, I.L. Moudrakovski, J.A. Ripmeester, Appl. Phys. Lett. 91 (2007) 171903.

Google Scholar

[14] F.M. Mulder, M. Wagemaker, L. van Eijck, G.J. Kearley, Chem. Phys. Chem. 9 (2008) 1331.

Google Scholar

[15] T.A. Strobel, E.D. Sloan, C.A. Koh, J. Chem. Phys. 130 (2009) 014506.

Google Scholar

[16] E. Pefoute, E. Kemner, J. C. Soetens, et al., J. of Phys. Chem. C, 116 (2012) 16823.

Google Scholar

[17] K. Lokshin and Y. Zhao, Applied Phys. Lett. 88 (2006) 131909.

Google Scholar

[18] Information on https: /www. helmholtz-berlin. de/media/media/grossgeraete/nutzerdienst /neutronen/instrumente/inst/bensc_v3. pdf.

Google Scholar

[19] M. Russina, E. Kemner, private communication.

Google Scholar

[20] Information on http: /encyclopedia. airliquide. com/Encyclopedia. asp?GasID=36.

Google Scholar

[21] P.A. Georgiev, D.K. Ross, A. De Monte et al, Carbon 43 (2005) 895.

Google Scholar

[22] R. Hempelmann, Quasielastic Neutron Scattering and Solid State Diffusion, Oxford University Press, Oxford (2000).

Google Scholar

[23] H. Jobic, M. Bee, A. Methivier, J. Combet, Microporous and Mesoporous Materials 42, (2001) 135.

Google Scholar

[24] S.S. Batsanov, A.S. Batsanov, Introduction to Structural Chemistry, Springer Science & Business Media, Heidelberg, (2012).

Google Scholar

[25] F. Fernadnez-Alonso, F.J. Bermejo,C. Cabrilli et al., Phys. Rev. Lett., 98, (2007) 215503.

Google Scholar

[26] M. Xu, F. Sebastianelli, Z. Bacic, J. Phys. Chem. A, 113 (2009) 7601.

Google Scholar

[27] M. Russina, F. Mezei, R. Lechner, S. Longeville, B. Urban, Phys. Rev. Lett. 84 (2000) 3630.

Google Scholar