[1]
Klement, W. and R. Willens, Non-crystalline structure in solidified gold–silicon alloys. (1960).
DOI: 10.1038/187869b0
Google Scholar
[2]
Chen, H., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): pp.1505-1511.
DOI: 10.1016/0001-6160(74)90112-6
Google Scholar
[3]
Kui, H., A.L. Greer, and D. Turnbull, Formation of bulk metallic glass by fluxing. Applied Physics Letters, 1984. 45(6): pp.615-616.
DOI: 10.1063/1.95330
Google Scholar
[4]
Cheng, Y. and E. Ma, Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science, 2011. 56(4): pp.379-473.
DOI: 10.1016/j.pmatsci.2010.12.002
Google Scholar
[5]
Suryanarayana, C. and A. Inoue, Bulk metallic glasses. 2011: CRC Press.
Google Scholar
[6]
Schroers, J., The superplastic forming of bulk metallic glasses. Jom, 2005. 57(5): pp.35-39.
DOI: 10.1007/s11837-005-0093-2
Google Scholar
[7]
Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 2000. 48(1): pp.279-306.
DOI: 10.1016/s1359-6454(99)00300-6
Google Scholar
[8]
Johnson, W., Bulk amorphous metal—An emerging engineering material. Jom, 2002. 54(3): pp.40-43.
DOI: 10.1007/bf02822619
Google Scholar
[9]
Wang, W. -H., C. Dong, and C. Shek, Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004. 44(2): pp.45-89.
DOI: 10.1016/j.mser.2004.03.001
Google Scholar
[10]
10. Schroers, J., Processing of bulk metallic glass. Advanced materials, 2010. 22(14): pp.1566-1597.
DOI: 10.1002/adma.200902776
Google Scholar
[11]
Schroers, J. and G. Kumar, Bulk Metallic Glass in Micro to Nano Length Scale Applications. The Nano-Micro Interface: Bridging the Micro and Nano Worlds, 2015: pp.159-188.
DOI: 10.1002/9783527679195.ch9
Google Scholar
[12]
Kumar, G., H.X. Tang, and J. Schroers, Nanomoulding with amorphous metals. Nature, 2009. 457(7231): pp.868-872.
DOI: 10.1038/nature07718
Google Scholar
[13]
Schroers, J., Q. Pham, and A. Desai, Thermoplastic forming of bulk metallic glass—a technology for MEMS and microstructure fabrication. Microelectromechanical Systems, Journal of, 2007. 16(2): pp.240-247.
DOI: 10.1109/jmems.0007.892889
Google Scholar
[14]
Liu, C. and Q. Zhao, Influence of surface-energy components of Ni–P–TiO2–PTFE nanocomposite coatings on bacterial adhesion. Langmuir, 2011. 27(15): pp.9512-9519.
DOI: 10.1021/la200910f
Google Scholar
[15]
Mittal, K.L., Contact angle, wettability and adhesion. Vol. 4. 2006: CRC Press.
Google Scholar
[16]
Król, P. and B. Król, Determination of free surface energy values for ceramic materials and polyurethane surface-modifying aqueous emulsions. Journal of the European Ceramic Society, 2006. 26(12): pp.2241-2248.
DOI: 10.1016/j.jeurceramsoc.2005.04.011
Google Scholar
[17]
Pignataro, B., et al., Adhesion properties on nanometric scale of silicon oxide and silicon nitride surfaces modified by. Surf Interface Anal, 2002. 33: pp.54-58.
DOI: 10.1002/sia.1161
Google Scholar
[18]
von Fraunhofer, J.A., Adhesion and cohesion. International journal of dentistry, 2012. (2012).
Google Scholar
[19]
Lin, Y. -C., et al. Zr-based metallic glass as a novel MEMS bonding material. in Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on. 2011. IEEE.
DOI: 10.1109/memsys.2011.5734473
Google Scholar
[20]
Yeh, M., C. Chang, and T. Chuang, Diffusion bonding of a superplastic inconel 718SPF superalloy by electroless nickel plating. Journal of materials engineering and performance, 2000. 9(1): pp.51-55.
DOI: 10.1361/105994900770346277
Google Scholar
[21]
Müller, J. and D. Neuschütz, Efficiency of α-alumina as diffusion barrier between bond coat and bulk material of gas turbine blades. Vacuum, 2003. 71(1): pp.247-251.
DOI: 10.1016/s0042-207x(02)00746-7
Google Scholar