Iron-Water Interface under Electrochemical Condition

Article Preview

Abstract:

Spin polarized density functional theory calculations have been performed to characterize the structure of water molecules on iron surface under applied charges. It is found that water molecules of the contact layer take H-down configuration under the negative charge, on the other hand, under the positive charge, they adsorbed on a top site of iron atom, as the applied charge increases, the dissociation of water molecules proceed. In addition, we found that the energy shift of the Fermi level varies linearly in the range from-e to +e, while beyond this range it tends to saturate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1399-1403

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.D. Taylor, S.A. wasileski, J.S. Filhol and M. Neurock, First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure, Phys. Rev. B. 73 (2006).

DOI: 10.1103/physrevb.73.165402

Google Scholar

[2] E. Skúlason, G.S. Karlberg, J. Rossmeisl, T. Bliggard, J. Greeley, H. Jónsson and J.K. Nørskov, Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode, Phys. Chem. Chem. Phys. 9 (2007).

DOI: 10.1039/b700099e

Google Scholar

[3] O. Sugino, I. Hamada, M. Otani, Y. Morikawa, T. Ikeshoji and Y. Okamoto, First-principles molecular dynamics simulation of biased electrode/solution interface, Surf. Sci. 601 (2007) 5237-5240.

DOI: 10.1016/j.susc.2007.04.208

Google Scholar

[4] M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto and T. Ikeshoji, Electrode dynamics from first principles, J. Phys. Sco. Jpn. 77 (2008) 024802-024807.

DOI: 10.1143/jpsj.77.024802

Google Scholar

[5] S. Schnur and A. Groß, Properties of metal-water interfaces studied from first principles, New J. Phys. 11 (2009) 125003.

DOI: 10.1088/1367-2630/11/12/125003

Google Scholar

[6] C.D. Taylor, Atomistic modeling of corrosion events at the interface between a Metal and its environment, International Journal of Corrosion 2012 (2012) 1-13.

DOI: 10.1155/2012/204640

Google Scholar

[7] N. Nunomura and S. Satoshi, First-principles calculation of water molecules with adsorbed ions on the Fe(001) surface, Mater. Sci. Forum 654-656 (2010) 1662-1665.

DOI: 10.4028/www.scientific.net/msf.654-656.1662

Google Scholar

[8] W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140 (1965) 1133-1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[9] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14 (2002) 2745-2779.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[10] N. Troullier and J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993-(2006).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[11] J.P. Perdew, K. Bruke and M. Ernzehof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[12] H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[13] C.D. Taylor and P. Marcus eds. Molecular modeling of corrosion process. New Jersey: John Wiley & Sons; (2015).

Google Scholar

[14] A. Kokalji, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comp. Mater. Sci. (2003) 18, 155-168. Code available from http: /www. xcrysden. org.

DOI: 10.1016/s0927-0256(03)00104-6

Google Scholar