Fluctuation of Position and Energy of a Fine Particle in Plasma Nanofabrication

Article Preview

Abstract:

We are developing plasma nanofabrication, namely, nanoand micro scale guided assembly using plasmas. We manipulate nanoand micro objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of a fine particle (= each object) in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. In the first experiment, we grabbed a fine particle in plasma using an optical tweezers. The fine particle moves in a potential well made by the optical tweezers. This is a kind of Brownian motion and the position fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one. In the second experiment, we deduced interaction potential between two fine particles during their Coulomb collision. We found that there exist repulsive and attractive forces between them. The repulsive force is a screened Coulomb one, whereas the attractive force is likely a force due to a shadow effect, a non-collective attractive force. Moreover, we noted that there is a fluctuation of the potential, probably due to fluctuation of electrostatic force. These position and potential energy fluctuations may limit the accuracy of guided assembly using plasmas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1772-1777

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Hosokawa, R. Matsuzaki and T. Asamaki, Jpn. J. Appl. Phys. 13 (1974) 435.

Google Scholar

[2] H. Abe, M. Yoneda and N. Fujiwara, 2008 Jpn. J. Appl. Phys. (2008) 1435.

Google Scholar

[3] H. Tsuda, Y. Takao, K. Eriguchi and K. Ono, Jpn. J. Appl. Phys. 51 (2012) 08HC01.

Google Scholar

[4] N. Itagaki, K. Matsushima, D. Yamashita, H. Seo, K. Koga and M. Shiratani, Mater. Res. Express 1 (2014) 036405.

DOI: 10.1088/2053-1591/1/3/036405

Google Scholar

[5] I. Suhariadi, M. Shiratani and N. Itagaki, Mater. Res. Express 1 (2014) 036403.

DOI: 10.1088/2053-1591/1/3/036403

Google Scholar

[6] H. Seo, M. K. Son, N. Itagaki, K. Koga and M. Shiratani, J. Power Sources 307 (2016) 25.

Google Scholar

[7] T. Amano, T. Sarinont, K. Koga, M. Hirata, A. Tanaka and M. Shiratani, J. Nanosci. Nanotechnol. 15 (2015) 9298.

DOI: 10.1166/jnn.2015.11427

Google Scholar

[8] T. Okada, T. Kaneko, T. Hatakeyama and K. Tohji, Chem. Phys. Lett. 417 (2006) 288.

Google Scholar

[9] S. Komatsu, K. Kurashima, H. Kanda, K. Okada, M. Mitomo, Y. Moriyoshi, Y. Shimuzu, M. Shiratani, T. Nakano and S. Samukawa, Appl. Phys. Lett. 81 (2002) 4547.

DOI: 10.1063/1.1527987

Google Scholar

[10] S. Komatsu, K. Kurashima, Y. Shimizu, Y. Moriyoshi, M. Shiratani and K. Okada, J. Phys. Chem. B 108 (2004) 205.

Google Scholar

[11] S. Komatsu, A. Okudo, D. Kazami, D. Golberg, Y. B. Li, Y. Moriyoshi, M. Shiratani and K. Okada, J. Phys. Chem. B 108 (2004) 5182.

DOI: 10.1021/jp0493475

Google Scholar

[12] S. Komatsu and M. Shiratani, Jpn. J. Appl. Phys. 53 (2014) 010202.

Google Scholar

[13] T. E. Saraswati, S. Tsumura and M. Nagatsu, Jpn. J. Appl. Phys. 53 (2014) 010205.

Google Scholar

[14] E. Yang and M. Nagatsu, Jpn. J. Appl. Phys. 53 (2014) 010206.

Google Scholar

[15] M. A. Ciolan, I. Motrescu, D. Luca and M. Nagatsu, Jpn. J. Appl. Phys. 53 (2014) 010207.

Google Scholar

[16] H. Kobayashi, P. Chewchinda, Y. Inoue, H. Funakubo, M. Hara, M. Fujino, O. Odawara and H. Wada, Jpn. J. Appl. Phys. 53 (2014) 010208.

DOI: 10.7567/jjap.53.010208

Google Scholar

[17] H. Hashizume, T. Ohta, K. Takeda, K. Ishikawa, M. Hori and M. Ito, Jpn. J. Appl. Phys. 53 (2014) 010209.

Google Scholar

[18] F. Oshima, S. Stauss, Y. Inose and K. Terashima, Jpn. J. Appl. Phys. 53 (2014) 010214.

Google Scholar

[19] M. Shiratani, K. Koga, K. Kamataki, S. Iwashita, G. Uchida, H. Seo and N. Itagaki, Jpn. J. Appl. Phys., 53 (2014) 010201.

DOI: 10.7567/jjap.53.010201

Google Scholar

[20] M. Shiratani, J. Plasma Fusion Res. 90 (2014) 374.

Google Scholar

[21] M. Shiratani, K. Koga, S. Iwashita, G. Uchida, N. Itagaki and K. Kamataki, J. Phys. D 44 (2011) 174038.

DOI: 10.1088/0022-3727/44/17/174038

Google Scholar

[22] T. Ito, K. Koga, D. Yamashita, K. Kamataki, N. Itagaki, G. Uchida and M. Shiratani, J. Phys.: Conf. Ser. 518 (2014) 012014.

DOI: 10.1088/1742-6596/518/1/012014

Google Scholar

[23] M. Shiratani, Y. Morita, K. Kamataki, H. Seo, G. Uchida, N. Itagaki and K. Koga, 2014 JPS Conf. Proc. 1 (2014) 5083.

Google Scholar

[24] Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa and S. Ogi, Appl. Phys. Lett. 53 (1988) 1263.

Google Scholar

[25] H. Kawasaki, T. Fukuzawa, H Tsuruoka, T. Yoshioka, M. Shiratani and Y. Watanabe, Jpn. J. Appl. Phys. 33 (1994) 4198.

Google Scholar

[26] H. Kawasaki, J. Kida, K. Sakamoto, T. Fukuzawa, M. Shiratani and Y. Watanabe, J. Appl. Phys. 83 (1998) 5665.

Google Scholar

[27] T. Fukuzawa, S. Kushima, Y. Matsuoka, M. Shiratani and Y. Watanabe, J. Appl. Phys. 86 (1999) 3543.

Google Scholar

[28] K. Koga, M. Kai, M. Shiratani, Y. Watanabe and N. Shikatani, Jpn. J. Appl. Phys. 41 (2002) L168.

Google Scholar

[29] S. Nunomura, K. Koga, M. Shiratani, Y. Watanabe, Y. Morisada, N. Matsuki and S. Ikeda, Jpn. J. Appl. Phys. 44 (2005) L1509.

DOI: 10.1143/jjap.44.l1509

Google Scholar

[30] M. Shiratani, K. Koga, S. Iwashita and S. Nunomura, Faraday Discuss. 137 (2008) 127.

Google Scholar

[31] K. Kamataki, H. Miyata, K. Koga, G. Uchida, N. Itagaki and M. Shiratani, Appl. Phys. Express 4 (2011) 105001.

DOI: 10.1143/apex.4.105001

Google Scholar

[32] K. Kamataki, Y. Morita, M. Shiratani, K. Koga, G. Uchida and N. Itagaki, J. Inst. 7 (2012) C04017.

DOI: 10.1088/1748-0221/7/04/c04017

Google Scholar

[33] K. Kamataki, K. Koga, G. Uchida, N. Itagaki, D. Yamashita, H. Matsuzaki and M. Shiratani, Thin Solid Films 523 (2012) 76.

DOI: 10.1016/j.tsf.2012.07.059

Google Scholar

[34] A. Ashkin, Proc. Natl. Acad. Sci. 94 (1997) 4853.

Google Scholar

[35] A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6 (2000) 841.

Google Scholar

[36] K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75 (2004) 2787.

Google Scholar

[37] A. Ashkin, Optical Trapping and Manipoulation of Neutral Particles Using Lasers (World Scientific, Singapore, 2006).

Google Scholar

[38] J. -P. Boeuf and C. Punset, Dusty Plasmas (John Wiley & Sons, England, 1999) Chapter 1.

Google Scholar

[39] V. N. Tsytovich, G. Morfill, S. V. Vladimirov, H. M. Thomas, Elementary Physics of Complex Plasmas (Springer, Berlin, 2007).

Google Scholar