Use of Carbon Nanomaterials as a Catalyst Support in Fuel Cells

Article Preview

Abstract:

PtRu or Pt catalysts were supported on four types of carbon nanomaterials with different shapes, sizes, and graphitic and electrical properties, and their resulting catalytic activities were evaluated by electrochemical methods. The carbon nanomaterials used included two types of particles: Arc Black (AcB) and Vulcan XC-72R (Vulcan), and two types of nanofibers: carbon nanocoils (CNC) and VGCF-X. Pt and Ru were loaded onto the nanomaterials by a reduction method using sodium borohydride. Transmission electron microscopy and X-ray diffraction (XRD) revealed the PtRu catalyst particles to be 4–6 nm in diameters. The shifts in the Pt (111) XRD peaks of the catalysts on CNC and VGCF-X were larger than those on AcB and Vulcan, indicating a higher degree of alloying between Pt and Ru. The diameters of the CNC-supported Pt and PtRu catalyst particles had the narrowest distributions and were constant within the range of catalyst loadings investigated. Electrochemical studies of the catalysts during methanol oxidation were carried out using cyclic voltammetry. The catalyst particles supported on CNC and VGCF-X exhibited higher catalytic activity than those on AcB and Vulcan. The effect of the surface area of the carbon nanomaterials on the catalytic activity is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1882-1888

Citation:

Online since:

November 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Suda, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, H. Muramoto, J. Phys.: Conf. Series 433 (2013) 012008 (12pp).

DOI: 10.1088/1742-6596/433/1/012008

Google Scholar

[2] Y. Hosokawa, Y. Shinohara, M. Yokota, H. Shiki, Y. Suda, S. Oke, H. Takikawa, T. Ina, M. Morioki, Y. Fujimura, T. Yamaura, S. Itoh, K. Miura, J. Phys. D: Appl. Phys. 41 (2008) 205418 (5pp).

DOI: 10.1088/0022-3727/41/20/205418

Google Scholar

[3] Y. Sugioka, Y. Suda, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, IEEE Trans. Plasma Sci. 40 (2012) 1794–1800.

DOI: 10.1109/tps.2012.2199769

Google Scholar

[4] S. Oke, M. Yamamoto, K. Shinohara, H. Takikawa, H. Xiaojun, S. Itoh, T. Yamaura, K. Miura, K. Yoshikawa, T. Okawa, N. Aoyagi, Chem. Eng. J. 15 (2009) 434–438.

DOI: 10.1016/j.cej.2008.10.005

Google Scholar

[5] T. Sato, Y. Suda, H. Uruno, H. Takikawa, H. Tanoue, H. Ue, N. Aoyagi, T. Okawa, K. Shimizu, J. Phys.: Conference Series, 352 (2012) 012032 (7 pp).

DOI: 10.1088/1742-6596/352/1/012032

Google Scholar

[6] S. Oke, Y. Izumi, T. Ikeda, H. Uruno, Y. Suda, H. Takikawa, S. Itoh, T. Yamaura, H. Ue, T. Sakakibara, S. Sugawara, T. Okawa, N. Aoyagi, Electrochemistry 77 (2009) 210–213.

DOI: 10.5796/electrochemistry.77.210

Google Scholar

[7] T. Ikeda, S. Kaida, T. Satou, Y. Suda, H. Takikawa, H. Tanoue, S. Oke, H. Ue, T. Okawa, N. Aoyagi, K. Shimizu, Jpn. J. Appl. Phys. 80 (2011) 01AF13-1-3.

DOI: 10.7567/jjap.50.01af13

Google Scholar

[8] M. Yokota, Y. Hosokawa, Y. Shinohara, T. Kawabata, K. Takimoto, Y. Suda, et al, J. Nanosci. Nanotechnol. 10 (2010) 3910–3914.

Google Scholar

[9] Y. Suda, K. Maruyama, T. Iida, H. Takikawa, H. Ue, et al, Crystals, 5 (2015) 47-60.

Google Scholar

[10] M. Hyun, S. Kim, B. Lee, D. Peck, Y. Shul, D. Jung, Catal. Today 132 (2008) 138–145.

Google Scholar

[11] A. Lo, N. Yu, S. Huang, C. Hung, S. Liu, et al, Diam. Relat. Mater. 20 (2011) 343–350.

Google Scholar

[12] P.L. Antonucci, A.S. Arico, P. Creti, E. Ramunni, V. Antonucci, Solid State Ionics 125 (1999) 431–437.

DOI: 10.1016/s0167-2738(99)00206-4

Google Scholar

[13] E. Antolini, F. Cardellini, J. Alloy. and Compd. 315 (2001) 118–122.

Google Scholar

[14] Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Mater. Today Comm., 3 (2015) 96-103.

DOI: 10.1016/j.mtcomm.2015.02.003

Google Scholar