Effect of As-Rolled Microstructure on Static Recrystallization Characteristics and Texture Evolution during Annealing

Article Preview

Abstract:

Magnesium AZ31 alloy sheets were rolled at 100 °C at a high rolling speed of 1000 m/min. After 30% reduction, the microstructure was heavily twinned and shear banded, while a partially dynamically recrystallized and twinned microstructure was seen at the reduction of 49%. The as-rolled specimens were then annealed at 500 °C for increasing times. Microstructure and texture were characterized by optical microscopy, electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). Texture weakening was found during annealing of the specimens at both reductions. However, the texture weakening was more effective in the fully twinned and shear banded specimen than the partially DRXed and twinned specimen. Effects of as-rolled microstructure on static recrystallization characteristics and texture evolution during annealing were studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1876-1881

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Luo, A.K. Sachdev. Applications of magnesium alloys in automotive engineering. in: Bettles C, Barnett M, (Eds. ). Advances in Wrought Magnesium Alloys Fundamentals of Processing, Properties and Applications Woodhead Publishing Limited, (2012).

DOI: 10.1533/9780857093844.3.393

Google Scholar

[2] M.O. Pekguleryuz. Current developments in wrought magnesium alloys. in: Bettles C, Barnett M, (Eds. ). Advances in Wrought Magnesium Alloys Fundamentals of Processing, Properties and Applications Woodhead Publishing Limited, (2012).

DOI: 10.1533/9780857093844.1.3

Google Scholar

[3] P. Ding, F. Pan, B. Jiang, J. Wang, H. Li, J. Wu, Y. Xu, Y. Wen. Twin-roll strip casting of magnesium alloys in China, Transactions of Nonferrous Metals Society of China 18 (2008) s7-s11.

DOI: 10.1016/s1003-6326(10)60165-3

Google Scholar

[4] D. Liang, C.B. Cowley. The Twin-Roll Strip Casting of Magnesium, JOM 56 (2004) 26-28.

DOI: 10.1007/s11837-004-0122-6

Google Scholar

[5] H. Koh, T. Sakai, H. Utsunomiya, S. Minamiguchi. Deformation and texture evolution during high-speed rolling of AZ31 magnesium sheets, Mater. Trans. 48 (2007) 2023-(2027).

DOI: 10.2320/matertrans.l-mra2007875

Google Scholar

[6] F. Zarandi, S. Yue. Magnesium Sheet: Challenges and Opportunities In: Czerwinski F, (Ed. ). Magnesium Alloys - Design, Processing and Properties: InTech, 2011. pp.297-320.

DOI: 10.5772/13989

Google Scholar

[7] A. Muraoka, H. Utsunomiya, R. Matsumoto, T. Sakai. Improvement in rolling workability of Fe3Al by high-speed rolling. J. Phys. Conf. Ser., vol. 379: IOP Publishing Ltd, (2012).

DOI: 10.1088/1742-6596/379/1/012044

Google Scholar

[8] M. Sanjari, A.S.H. Kabir, A. Farzadfar, H. Utsunomiya, E. Essadiqi, R. Petrov, L. Kestens, S. Yue. Promotion of texture weakening in magnesium by alloying and thermomechanical processing-II high speed rolling, J. Mater. Sci. 49 (2014) 1426-1436.

DOI: 10.1007/s10853-013-7827-2

Google Scholar

[9] H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, T. Sakai. Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets, J. Mater. Sci. 43 (2008) 7148–7156.

DOI: 10.1007/s10853-008-3021-3

Google Scholar

[10] S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, J. Tian. Effect of twinning and dynamic recrystallization on the high strain rate rolling process, Scr. Mater. 63 (2010) 985–988.

DOI: 10.1016/j.scriptamat.2010.07.029

Google Scholar

[11] T. Sakai, Y. Watanabe, H. Utsunomiya. Microstructure and texture of AZ31 magnesium alloy sheet rolled by high speed warm rolling, Mater. Sci. Forum 618-619 (2009) 483-386.

DOI: 10.4028/www.scientific.net/msf.618-619.483

Google Scholar

[12] J. Su, M. Sanjari, A.S.H. Kabir, I. -H. Jung, J.J. Jonas, S. Yue, H. Utsunomiy. Characteristics of magnesium AZ31 Alloys subjected to High speed rolling, Mater. Sci. Eng. A 636 (2015) 582–592.

DOI: 10.1016/j.msea.2015.03.083

Google Scholar

[13] J. Su, M. Sanjari, A.S.H. Kabir, I. -H. Jung, S. Yue. Dynamic recrystallization mechanisms during high speed rolling of Mg-3Al-1Zn alloy sheets (in print), Scripta Materialia (2015).

DOI: 10.1016/j.scriptamat.2015.10.040

Google Scholar

[14] M. Kohzu, K. Kii, Y. Nagata, H. Nishio, K. Higashi, H. Inoue. Texture Randomization of AZ31 Magnesium Alloy Sheets for Improving the Cold Formability by a Combination of Rolling and High-Temperature Annealing, Mater Trans 51 (2010) 749 to 755.

DOI: 10.2320/matertrans.l-m2010802

Google Scholar

[15] A. Levinson, R.K. Mishra, R.D. Doherty, S.R. Kalidindi. Influence of deformation twinning on static annealing of AZ31 Mg alloy, Acta Mater 61 (2013) 5966–5978.

DOI: 10.1016/j.actamat.2013.06.037

Google Scholar

[16] X. Li, P. Yang, L. -N. Wang, L. Meng, F. Cui. Orientational analysis of static recrystallization at compression twins in a magnesium alloy AZ31, Mater. Sci. Eng. A 517 (2009) 160–169.

DOI: 10.1016/j.msea.2009.03.045

Google Scholar