[1]
A.A. Luo, A.K. Sachdev. Applications of magnesium alloys in automotive engineering. in: Bettles C, Barnett M, (Eds. ). Advances in Wrought Magnesium Alloys Fundamentals of Processing, Properties and Applications Woodhead Publishing Limited, (2012).
DOI: 10.1533/9780857093844.3.393
Google Scholar
[2]
M.O. Pekguleryuz. Current developments in wrought magnesium alloys. in: Bettles C, Barnett M, (Eds. ). Advances in Wrought Magnesium Alloys Fundamentals of Processing, Properties and Applications Woodhead Publishing Limited, (2012).
DOI: 10.1533/9780857093844.1.3
Google Scholar
[3]
P. Ding, F. Pan, B. Jiang, J. Wang, H. Li, J. Wu, Y. Xu, Y. Wen. Twin-roll strip casting of magnesium alloys in China, Transactions of Nonferrous Metals Society of China 18 (2008) s7-s11.
DOI: 10.1016/s1003-6326(10)60165-3
Google Scholar
[4]
D. Liang, C.B. Cowley. The Twin-Roll Strip Casting of Magnesium, JOM 56 (2004) 26-28.
DOI: 10.1007/s11837-004-0122-6
Google Scholar
[5]
H. Koh, T. Sakai, H. Utsunomiya, S. Minamiguchi. Deformation and texture evolution during high-speed rolling of AZ31 magnesium sheets, Mater. Trans. 48 (2007) 2023-(2027).
DOI: 10.2320/matertrans.l-mra2007875
Google Scholar
[6]
F. Zarandi, S. Yue. Magnesium Sheet: Challenges and Opportunities In: Czerwinski F, (Ed. ). Magnesium Alloys - Design, Processing and Properties: InTech, 2011. pp.297-320.
DOI: 10.5772/13989
Google Scholar
[7]
A. Muraoka, H. Utsunomiya, R. Matsumoto, T. Sakai. Improvement in rolling workability of Fe3Al by high-speed rolling. J. Phys. Conf. Ser., vol. 379: IOP Publishing Ltd, (2012).
DOI: 10.1088/1742-6596/379/1/012044
Google Scholar
[8]
M. Sanjari, A.S.H. Kabir, A. Farzadfar, H. Utsunomiya, E. Essadiqi, R. Petrov, L. Kestens, S. Yue. Promotion of texture weakening in magnesium by alloying and thermomechanical processing-II high speed rolling, J. Mater. Sci. 49 (2014) 1426-1436.
DOI: 10.1007/s10853-013-7827-2
Google Scholar
[9]
H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, T. Sakai. Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets, J. Mater. Sci. 43 (2008) 7148–7156.
DOI: 10.1007/s10853-008-3021-3
Google Scholar
[10]
S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, J. Tian. Effect of twinning and dynamic recrystallization on the high strain rate rolling process, Scr. Mater. 63 (2010) 985–988.
DOI: 10.1016/j.scriptamat.2010.07.029
Google Scholar
[11]
T. Sakai, Y. Watanabe, H. Utsunomiya. Microstructure and texture of AZ31 magnesium alloy sheet rolled by high speed warm rolling, Mater. Sci. Forum 618-619 (2009) 483-386.
DOI: 10.4028/www.scientific.net/msf.618-619.483
Google Scholar
[12]
J. Su, M. Sanjari, A.S.H. Kabir, I. -H. Jung, J.J. Jonas, S. Yue, H. Utsunomiy. Characteristics of magnesium AZ31 Alloys subjected to High speed rolling, Mater. Sci. Eng. A 636 (2015) 582–592.
DOI: 10.1016/j.msea.2015.03.083
Google Scholar
[13]
J. Su, M. Sanjari, A.S.H. Kabir, I. -H. Jung, S. Yue. Dynamic recrystallization mechanisms during high speed rolling of Mg-3Al-1Zn alloy sheets (in print), Scripta Materialia (2015).
DOI: 10.1016/j.scriptamat.2015.10.040
Google Scholar
[14]
M. Kohzu, K. Kii, Y. Nagata, H. Nishio, K. Higashi, H. Inoue. Texture Randomization of AZ31 Magnesium Alloy Sheets for Improving the Cold Formability by a Combination of Rolling and High-Temperature Annealing, Mater Trans 51 (2010) 749 to 755.
DOI: 10.2320/matertrans.l-m2010802
Google Scholar
[15]
A. Levinson, R.K. Mishra, R.D. Doherty, S.R. Kalidindi. Influence of deformation twinning on static annealing of AZ31 Mg alloy, Acta Mater 61 (2013) 5966–5978.
DOI: 10.1016/j.actamat.2013.06.037
Google Scholar
[16]
X. Li, P. Yang, L. -N. Wang, L. Meng, F. Cui. Orientational analysis of static recrystallization at compression twins in a magnesium alloy AZ31, Mater. Sci. Eng. A 517 (2009) 160–169.
DOI: 10.1016/j.msea.2009.03.045
Google Scholar