[1]
A. Inoue, N. Nishiyama, K. Amiya, T. Zhang, T. Masumoto, Ti-based amorphous alloys with a wide supercooled liquid region, Materials Letters 61 (2007) 2851–2854.
DOI: 10.1016/j.matlet.2007.03.048
Google Scholar
[2]
X.F. Wu, Z.Y. Suo, Y. Si, L.K. Meng, K.Q. Qiu, Bulk metallic glass formation in a ternary Ti–Cu–Ni alloy system, J. Alloys Compd. 452 (2008) 268–272.
DOI: 10.1016/j.jallcom.2006.11.010
Google Scholar
[3]
J.M. Park, Y.C. Kim, W.T. Kim, D.H. Kim, Ti-Based Bulk Metallic Glasses with High Specific Strength, Materials Transactions, 45: 2 (2004) 595-598.
DOI: 10.2320/matertrans.45.595
Google Scholar
[4]
P. Gong, K. -F. Yaon, X. Wang, Y. Shao, Centimeter-sized Ti-based bulk metallic glass with high specific strength, Progress in Natural Science: Materials International 22: 5 (2012) 401–406.
DOI: 10.1016/j.pnsc.2012.10.007
Google Scholar
[5]
Y. Huang, J. Shen, J. Sun, Formation, thermal stability and mechanical properties of Ti42. 5Zr7. 5Cu40Ni5Sn5 bulk metallic glasses, Sci. in China Series G: Physics, Mechanics and Astronomy 51: 4 (2008) 372-378.
DOI: 10.1007/s11433-008-0049-y
Google Scholar
[6]
H.E. Khalifa, K.S. Vecchio, Thermal stability and crystallization phenomena of low cost Ti-based bulk metallic glass, Journal of Non-Crystalline Solids 357 (2011) 3393–3398.
DOI: 10.1016/j.jnoncrysol.2009.08.005
Google Scholar
[7]
J. Mei: Titanium-based Bulk Metallic Glasses: Glass Forming Ability and Mechanical Behavior. Mechanics, Joseph Fourier University, Grenoble, Ph.D. Thesis, (2009).
Google Scholar
[8]
H.C. Lin, P.H. Tsai, J.H. Ke, J.B. Li, et. al., Designing a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application, Intermetallics 55 (2014) 22-27.
DOI: 10.1016/j.intermet.2014.07.003
Google Scholar
[9]
P. Gargarella, S. Pauly, K.K. Song, J. Hu et. al., Ti–Cu–Ni shape memory bulk metallic glass composites, Acta Materialia 61 (2013) 151–162.
DOI: 10.1016/j.actamat.2012.09.042
Google Scholar
[10]
A. Ishida, M. Sato, Z.Y. Gao, Microstructure and shape memory behavior of Ti55. 5Ni44. 5-xCux (x = 11. 8-23. 5) thin films, Intermetallics 58 (2015) 103-108.
DOI: 10.1016/j.intermet.2014.11.011
Google Scholar
[11]
Y.C. Kim, W.T. Kim, D.H. Kim, A development of Ti-based bulk metallic glass, Materials Science and Engineering A 375–377 (2004) 127–135.
DOI: 10.1016/j.msea.2003.10.115
Google Scholar
[12]
P. Gong, K.F. Yaon, X. Wang, Y. Shao, Centimeter-sized Ti-based bulk metallic glass with high specific strength, Progress in Natural Science: Materials International 22: 5 (2012) 401–406.
DOI: 10.1016/j.pnsc.2012.10.007
Google Scholar
[13]
P. Li, G. Wang, D. Ding, J. Shen, Glass forming ability, thermodynamics and mechanical properties of novel Ti–Cu–Ni–Zr–Hf bulk metallic glasses, Materials and Design 53 (2014) 145–151.
DOI: 10.1016/j.matdes.2013.06.060
Google Scholar
[14]
P. Gargarella, S. Pauly, M.F. de Oliveira, U. Kühn, J. Eckert, Glass formation in the Ti–Cu system with and without Si additions, Journal of Alloys and Compounds 618 (2015) 413–420.
DOI: 10.1016/j.jallcom.2014.08.197
Google Scholar
[15]
Q. Li, G. Wang, X. Song, L. Fan, et. al., Ti50Cu23Ni20Sn7 bulk metallic glasses prepared by mechanical alloying and spark-plasma sintering, journal of materials processing technology 209 (2009) 3285–3288.
DOI: 10.1016/j.jmatprotec.2008.07.050
Google Scholar
[16]
I.K. Jeng, C.K. Lin, P.Y. Lee, Formation and characterization of mechanically alloyed Ti–Cu–Ni–Sn bulk metallic glass composites, Intermetallics 14 (2006) 957–961.
DOI: 10.1016/j.intermet.2006.01.031
Google Scholar
[17]
B. S. Murty, S. Ranganathan, M. Mohan Rao, Solid state amorphization in binary Ti-Ni, Ti-Cu and ternary Ti-Ni-Cu system by mechanical alloying, Materials &ience and Engineering, A 149 (1992) 231-240.
DOI: 10.1016/0921-5093(92)90384-d
Google Scholar
[18]
Körösy G., Tomolya K., Janovszky D., Sólyom J., Evaluation of XRD analysis of amorphous alloys, Mater Sci Forum 729 (2013) 419-423.
DOI: 10.4028/www.scientific.net/msf.729.419
Google Scholar