ω Phase Transformation and Mechanical Properties in Binary Zr-Nb Biomedical Alloy

Article Preview

Abstract:

The athermal ω phase transformation, magnetic susceptibility and deformation behavior of Zr-xNb alloys (x = 10 and 14) for use in medical devices subjected to magnetic resonance imaging (MRI) were investigated using electrical resistivity measurements, transmission electron microscopy observations and compression tests. The alloy with x = 10 exhibited a positive temperature coefficient in the electrical resistivity curve and the presence of an athermal ω phase at room temperature. On the other hand, the alloy with x = 14 showed an anomalous negative temperature coefficient (NTC) in the resistivity curve. Similar NTCs also appear in β-Ti alloys, which is interpreted as the growth of an athermal ω phase and the appearance of lattice modulation. The ω phase and diffuse satellites, which are possibly related to lattice modulation, were confirmed in the Zr-14Nb alloy at room temperature. The volume fraction of the athermal ω phase and the appearance of lattice modulation are related to the operating deformation mode and Young’s modulus. Thus, controlling the ω phase transformation in Zr-Nb alloys is key to developing medical devices that can be used in MRI.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1969-1973

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. E Olsen, Eur. J. Radiol, 68 (2008) 299-308.

Google Scholar

[2] J. Olsrud, J. Lätt, S. Brockstedt, B. Romner, I.M. Björkman-Burtscher, J. Magn. Reson. Imag. 22 (2005) 433-437.

DOI: 10.1002/jmri.20391

Google Scholar

[3] P. Thomsen, C. Larsson, L.E. Ericson, L. Sennerby, J. Lausmaa, B. Kasemo, J. Mater. Sci. Mater. Med. 8 (1997) 653-665.

DOI: 10.1023/a:1018579605426

Google Scholar

[4] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme, Biomaterials 25 (2004) 5705-5713.

DOI: 10.1016/j.biomaterials.2004.01.021

Google Scholar

[5] A. Yamamoto, R. Honma, M. Sumita, J. Biomed. Mater. Res. 39 (1998) 331-340.

Google Scholar

[6] F.Y. Zhou, B.L. Wang, K.J. Qiu, W.J. Lin, L. Li, Y.B. Wang, F.L. Nie, Y.F. Zheng, Mater. Sci. Eng. C 32 (2012) 851-857.

Google Scholar

[7] N. Nomura, Y. Tanaka, Suyalatu, R. Kondo, H. Doi, Y. Tsutsumi, T. Hanawa, Mater. Trans. 50 (2009) 2466-2472.

DOI: 10.2320/matertrans.m2009187

Google Scholar

[8] R. Kondo, N. Nomura, Suyalatu, Y. Tsutsumi, H. Doi, T. Hanawa, Acta Biomater. 7 (2011) 4278-4284.

DOI: 10.1016/j.actbio.2011.07.020

Google Scholar

[9] B.A. Hatt and J.A. Roberts, Acta Metall. 8 (1960) 575-584.

Google Scholar

[10] S.L. Ames and A.D. Mcqullan, Acta Mater. 2 (1954) 831-836.

Google Scholar

[11] M. Ikeda, S. Komatsu, T. Sugimoto, K. Kamei, J. Jap. Ins. Metals. 52 (1988) 1206-1211.

Google Scholar

[12] J.C. Ho and E.W. Collings, Phys. Rev. B 6 (1972) 3727-3739.

Google Scholar

[13] P. Wang, M. Todai, T. Nakano, Mater. Trans. 54 (2013) 156-160.

Google Scholar

[14] M. Todai, T. Fukuda, T. Kakeshita, J. Alloys. Comp. 577S (2013) S431-S434.

Google Scholar

[15] M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Acta Mater. 59 (2011) 6208-6218.

Google Scholar

[16] S-H Lee, M. Todai, M. Tane, K. Hagihara, T. Nakano, H. Nakajima, J. Mech. Behav. Bio. Mater. 14 (2012) 48-54.

Google Scholar

[17] M. Todai, K. Hagihara, T. Ishimoto, K. Yamamoto, T. Nakano, Tetsu to hagane 101 (2015) 501-505.

Google Scholar

[18] S. Hanada and O. Izumi, Metall. Trans. A 11A (1980) 1447-1452.

Google Scholar