[1]
F. Liu, F.X. Yu, D.Z. Zhao, L. Zuo, Microstructure and mechanical properties of an Al-12. 7Si-0. 7Mg alloy processed by extrusion and heat treatment, Mater. Sci. Eng. A 528 (2011) 3786-3790.
DOI: 10.1016/j.msea.2011.01.041
Google Scholar
[2]
H.E. Hu, X.Y. Wang, L. Deng, High temperature deformation behavior and optimal hot processing parameters of Al-Si eutectic alloy, Mater. Sci. Eng. A 576 (2013) 45-51.
DOI: 10.1016/j.msea.2013.03.059
Google Scholar
[3]
H.C. Liao, Y.N. Wu, K.X. Zhou, J. Yan, Hot deformation behavior and processing map of Al-Si-Mg alloys containing different amount of silicon based on Gleebe-3500 hot compression simulation, Mater. Des. 65 (2015) 1091-1099.
DOI: 10.1016/j.matdes.2014.08.021
Google Scholar
[4]
Y.N. Wu, H.C. Liao, K.X. Zhou, J. Yang, Effect of texture evolution on mechanical properties of near eutectic Al-Si-Mg alloy with minor addition of Zr/V during hot extrusion, Mater. Des. 57 (2014)416-420.
DOI: 10.1016/j.matdes.2013.12.068
Google Scholar
[5]
Y.N. Wu, H.C. Liao, Y. B Liu., K.X. Zhou, Dynamic precipitation of Mg2Si induced by temperature and strain during hot extrusion and its impact on microstructure and mechanical properties of near eutectic Al-Si-Mg-V alloy, Mater. Sci. Eng. A; 614 (2014).
DOI: 10.1016/j.msea.2014.07.023
Google Scholar
[6]
Kucukomeroglu T, Effect of equal-channel angular extrusion on mechanical and wear properties of eutectic Al-12Si alloy, Mater. Des. 31 (2010) 782-789.
DOI: 10.1016/j.matdes.2009.08.004
Google Scholar
[7]
Y.N. Wu, H.C. Liao, Corrosion Behavior of Extruded near Eutectic Al-Si-Mg and 6063 Alloys, J. Mater. Sci. Technol. 29 (2013) 380-386.
DOI: 10.1016/j.jmst.2013.02.001
Google Scholar
[8]
K. Ding, H.C. Liao, Q.M. Jin, Y. Tang, Effect of hot extrusion on mechanical properties and microstructure of near eutectic Al-12. 0%Si-0. 2%Mg alloy, Mater. Sci. Eng. A 527 (2010) 6887-6892.
DOI: 10.1016/j.msea.2010.07.068
Google Scholar
[9]
B. Chen, M. Gao, L. Wen, Y.X. Wang, M.J. Wang, Experiment and finite element simulation of online quenching process for 6063 aluminum alloy, Light Alloy Fabri. Technol. 40 (2012) 55-59.
Google Scholar
[10]
R. Xu, L.X. Li, L.Q. Zhang, B.W. Zhu, X. Liu, X.B. Bu, Influence of pressure and surface roughness on the heat transfer efficiency during water spray quenching of 6082 aluminum alloy, J. Mater. Process. Technol. 214 (2014) 2877-2883.
DOI: 10.1016/j.jmatprotec.2014.06.027
Google Scholar
[11]
M.J. Wang, G. Yang, C.Q. Huang, B. Chen, Simulation of temperature and stress in 6061 aluminum alloy during online quenching process, Trans. Nonferrous Met. Soc. China 24 (2014) 2168-2173.
DOI: 10.1016/s1003-6326(14)63328-8
Google Scholar
[12]
C.W. Li, X.Z. Pan, L.L. Liu, W. Cao, C.H. Li, Y.B. Yuan, M.J. Wang, Effect of on-line quenching on microstructure and mechanical properties of 6061 and 6005 alloy profile, Heat Treat. Metal. 35 (2010) 59-62.
Google Scholar
[13]
J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska, R. C. Wimpory, The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075, Mater. Charact. 65 (2012) 73-85.
DOI: 10.1016/j.matchar.2012.01.005
Google Scholar
[14]
A.K. Srivastava, V.C. Srivastava, A. Gloter, S.N. Ojha, Microstructural features induced by spray processing and hot extrusion of an Al-18%Si-5%Fe-1. 5%Cu alloy, Acta Mater. 54 (2006) 1741-1748.
DOI: 10.1016/j.actamat.2005.11.039
Google Scholar
[15]
S. Bikass, B. Andersson, A. Pilipenko, H.P. Langtangen, Simulation of initial cooling rate effect on the extrudate distortion in the aluminum extrusion process, Appl. Therm. Eng. 40 (2012) 326-336.
DOI: 10.1016/j.applthermaleng.2012.02.012
Google Scholar
[16]
X.B. Fan, Z.B. He, S.J. Yuan, P. Lin, Investigation on strengthening of 6A02 aluminum alloy sheet in hot forming-quenching integrated process with warm forming-dies, Mater. Sci. Eng. A 587 (2013) 221-227.
DOI: 10.1016/j.msea.2013.08.059
Google Scholar
[17]
B. Milkereit, H. FrÖck, C. Schick, O. Kessler, Continuous cooling precipitation diagram of cast aluminium alloy Al-7Si-0. 3Mg, Trans. Nonferrous Met. Soc. China 24 (2014) 2025-(2033).
DOI: 10.1016/s1003-6326(14)63308-2
Google Scholar