p.1939
p.1945
p.1951
p.1957
p.1963
p.1969
p.1974
p.1980
p.1987
Effect of Tempering on Microstructure and Creep Properties of P911 Steel
Abstract:
The microstructure and creep properties of a P911-type steel normalized at 1060°C and then subjected to one-step tempering at 760°C for 3 h or two-step tempering at 300°C for 3 h + 760°C for 3 h were examined. The transmission electron microscope (TEM) observations showed that the tempered martensite lath structure (TMLS) with a lath thickness of 340 nm evolved after both tempering regimes. High dislocation densities of 3×1014 or 5×1014 m-2 retained after one-and two-step tempering respectively. M23C6 carbides with a mean size of 120 nm and V-rich MX carbonitrides having a “wing” shape with an average length of about 40 nm precipitated on high-and low-angle boundaries and within ferritic matrix, respectively. A number of Nb-rich M(C,N) carbonitrides with a mean size of 20 nm precipitated on dislocations during low temperature tempering. The creep tests were carried out under constant load condition at 650°С at applied stresses of 100 and 118 MPa. Analysis of creep rate versus time curves showed that the use of two-step tempering decreases the minimum creep rate providing an increase in the creep strength in long-term conditions.
Info:
Periodical:
Pages:
1963-1968
Citation:
Online since:
November 2016
Price:
Сopyright:
© 2017 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: