Saturation of Deformation Twinning in Magnesium Alloys

Article Preview

Abstract:

The saturation of primary tensile twins in heavily textured Mg-alloy AZ31 is investigated, and their strain accommodation limit is evaluated. EBSD results suggest that the mean number of twins per grain saturate rapidly, followed by the stop of twin growth. Twinning saturation is included in a physical model of twin evolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2084-2087

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. El Kadiri, C.D. Barrett, J. Wang, C.N. Tomé, Why are {1012} twins profuse in magnesium?, Acta Mater. 85 (2015) 354-361.

Google Scholar

[2] E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Thermostastitical modelling of deformation twinning in HCP metals, Int. J. Plasticity 55 (2014) 25-42.

DOI: 10.1016/j.ijplas.2013.09.006

Google Scholar

[3] I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, C.N. Tomé, Statistical Analyses of Deformation Twinning in Magnesium, Philos. Mag. 90 (2010) 2161-90.

DOI: 10.1080/14786431003630835

Google Scholar

[4] David R. Steinmetz, Tom Jäpel, Burkhard Wietbrock, Philip Eisenlohr, Ivan Gutierrez-Urrutia, Alireza Saeed–Akbari, Tilmann Hickel, Franz Roters, Dierk Raabe, Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments, Acta Mater. 61 (2013).

DOI: 10.1016/j.actamat.2012.09.064

Google Scholar

[5] M.R. Barnett, O. Bouaziz, L.S. Toth, A microstructure based analytical model for tensile twinning in a rod textured Mg alloy, Int. J. Plasticity 72 (2015) 151-167.

DOI: 10.1016/j.ijplas.2015.05.003

Google Scholar

[5] M.R. Barnett, O. Bouaziz, L.S. Toth, A microstructure based analytical model for tensile twinning in a rod textured Mg alloy, Int. J. Plasticity 72 (2015) 151-167.

DOI: 10.1016/j.ijplas.2015.05.003

Google Scholar

[6] A. Khosravani, D.T. Fullwood, B.L. Adams, T.M. Rampton, M.P. Miles, R.K. Mishra, Nucleation and propagation of {1012} twins in AZ31 magnesium alloy, Acta Mater. 100 (2015) 202-214.

DOI: 10.1016/j.actamat.2015.08.024

Google Scholar

[7] J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Detwinning mechanisms for growth twins in face-centered cubic metals, Acta Mater. 58 (2010) 2262-2270.

DOI: 10.1016/j.actamat.2009.12.013

Google Scholar

[8] M.R. Barnett, Z. Keshavarz, A.G. Beer, X. Ma, Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy, Acta Mater. 56 (2008) 5-15.

DOI: 10.1016/j.actamat.2007.08.034

Google Scholar

[9] J. H Brunton, M.P.W. Wilson, The Kinetics of Twinning in Zinc and Tin Crystals, Proc. Roy. Soc. A 309 (1969) 345-361.

Google Scholar