[1]
J. Sawin, F. Sverrison, W. Rickerson, C. Lins, E. Musolino, K. Petrichenko, K. Seyboth, B. Sovacool, and L. Williamson, Renewables 2015 - Global Status Report, Paris, (2015).
Google Scholar
[2]
OECD/IEA, Key World Energy Satistics, Paris, (2015).
Google Scholar
[3]
N. I. P.S. Weitzel, J.M. Tanzosh, B. Boring, N. Okita, T. Takahashi, Advanced Ultra-Supercritical Power Plant ( 700 to 760°C ) Design for Indian Coal, Babcock & Wilcox- Technical paper BR-1884. Bangkok, Thailand, (2012).
Google Scholar
[4]
F. Abe, Grade 91 heat-resistant martensitic steel, in Coal Power Plant Materials and Life Assessment, 1st editio., A. Shibli, Ed. Surrey, United Kingdom: Woodhead Publishing Ltd, 2014, p.3–51.
DOI: 10.1533/9780857097323.1.3
Google Scholar
[5]
C. Schlacher, C. Béal, C. Sommitsch, S. Mitsche, and P. Mayr, Creep and damage investigation of advanced martensitic chromium steel weldments for high temperature applications in thermal power plants, Sci. Technol. Weld. Join., vol. 20, no. 1, p.82–90, Nov. (2014).
DOI: 10.1179/1362171814y.0000000259
Google Scholar
[6]
G. Eggeler, A. Ramteke, M. Coleman, B. Chew, G. Peter, A. Burblies, J. Hald, C. Jefferey, J. Rantala, M. deWitte, and R. Mohrmann, Analysis of creep in a welded 'P91' pressure vessel, Int. J. Press. Vessel. Pip., vol. 60, no. 3, p.237–257, Jan. (1994).
DOI: 10.1016/0308-0161(94)90125-2
Google Scholar
[7]
Y. Liu, S. Tsukamoto, K. Sawada, and F. Abe, Role of Boundary Strengthening on Prevention of Type IV Failure in High Cr Ferritic Heat-Resistant Steels, Metall. Mater. Trans. A, vol. 45, no. 3, p.1306–1314, Mar. (2014).
DOI: 10.1007/s11661-013-2072-5
Google Scholar
[8]
B. Sonderegger, Charakterisierung der Substruktur in modernen Kraftwerkswerkstoffen mittels der EBSD- Methode, (Doctoral dissertation) Technische Universität Graz, (2005).
Google Scholar
[9]
P. Häckel, Entstehung und Stabilitaet von Delta-Ferrit beim Schweißen von 9 % Chromstaehlen, " (Master, s thesis) Technische Universität Graz, (2013).
Google Scholar
[10]
M. Stockinger, Mikrostrukturelle Simulation des Gesenkschmiedens von Nickelbasis-Legierungen, (Doctoral dissertation) Technische Universität Graz, (2003).
Google Scholar
[11]
T. Seliga, Untersuchungen der Strukturstabilität von Ni-(Fe)-Basislegierungen für Rotorwellen in Dampfturbinen mit Arbeitstemperaturen über 700° C, RWTH Aachen, (2005).
Google Scholar
[12]
J. N. DuPont, J. C. Lippold, and S. D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys. Hoboken, NJ, USA: John Wiley & Sons, Inc., (2009).
DOI: 10.1002/9780470500262
Google Scholar
[13]
A. Schalber, Charakterisierung der Schweißeignung des Bor-modifizierten 9% Chromstahls CB2A, " (Master, s thesis) Technische Universität Graz, (1998).
Google Scholar
[14]
G. Kukutschki, Sammlung und Auswertung der Materialdaten von Stählen für Gas- und Dampfturbinenrotoren anhand eines Eigenschaftsprofils, " (Master, s thesis) Technische Universität Graz, (2003).
Google Scholar
[15]
Voestalpine Gießerei Traisen, Material Datasheet., Traisen, (2007).
Google Scholar
[16]
ISO, ISO 15614-1 - Schweißverfahrensprüfung, Lichtbogen- und Gasschweißen, Wien, (2005).
Google Scholar
[17]
C. Wiednig, Electron Beam Welding Alloy 625, " (Master, s thesis) Technische Universität Graz, (2013).
Google Scholar
[18]
C. Wiednig, C. Lochbichler, N. Enzinger, C. Beal, and C. Sommitsch, Dissimilar Electron Beam Welding of Nickel Base Alloy 625 and 9% Cr Steel, Procedia Eng., vol. 86, p.184–194, (2014).
DOI: 10.1016/j.proeng.2014.11.027
Google Scholar
[19]
B. Berger, Dissimilar Schweißen von ( Konstruktionsschweißungen ) NIBAS 625 mit warmfestem Cr- Stahl COST CB2, " (Master, s thesis) Technische Universität Graz, (2011).
Google Scholar
[20]
ISO, ISO 15614-11 - Schweißverfahrensprüfung von Strahlverfahren, Wien, (2002).
Google Scholar
[21]
voestalpine, CB2 creep diagramm 625°C (internal communication)., Linz, (2015).
Google Scholar
[22]
M. Schuler, S. Baumgartner, R. Schnitzer, and N. Enzinger, Creep investigation of CB2 joints using similar rutile CB2-flux cored wire, Weld. World, vol. 58, no. 6, p.903–913, (2014).
DOI: 10.1007/s40194-014-0169-0
Google Scholar
[23]
C. Schlacher, T. Pelzmann, C. Béal, C. Sommitsch, C. Gupta, H. Toda, and P. Mayr, Investigation of creep damage in advanced martensitic chromium steel weldments using synchrotron X-ray micro-tomography and EBSD, Mater. Sci. Technol., vol. 31, no. 5, p.516–521, (2015).
DOI: 10.1179/1743284714y.0000000621
Google Scholar
[24]
H. Cerjak, I. Holzer, P. Mayr, C. Pein, B. Sonderegger, and E. Kozeschnik, The relation between microstructure and creep properties of martensitic 9-12 % Cr steels, New Dev. Metall. Appl. High Strength Steels, 26. -28. 5. 2008, p.247–263, (2008).
Google Scholar
[25]
P. Mayr, Evolution of Microstructure and Mechanical Properties of the Heat Affected Zone in B-Containing 9% Cr steels, (Doctoral dissertation) Technische Universität Graz, (2007).
Google Scholar
[26]
C. Schlacher, M. Dikovits, C. Sommitsch, and P. Mayr, Creep and damage investigations of MARBN welded joints, in Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering, 2015, p.1–5.
Google Scholar
[27]
J. Parker, Creep fatigue interactions in power plant components, Mater. High Temp., vol. 31, no. 4, p.370–377, Nov. (2014).
Google Scholar