Numerical Simulation of Pore Evolution of 7050 Aluminum Alloy during Hot Compression Process

Article Preview

Abstract:

Evolution behavior of pores in 7050 aluminum alloy during hot compression process has been investigated by finite element (FE) numerical simulation. The representative volume element (RVE) model containing one isolated pore is built, in which the gas in pore is treated as ideal gas. Effects of initial pore inner pressure and deformation temperature on pore evolution have been investigated. The simulation results indicate that stress concentration exists around the pore in the compressing process. At the simple compression condition, the inner pressure of the pore increases but the volume decreases as the bulk metals deforms. However, the volume reaches a plateau after the yield point of bulk metal. The plateau volume depends on the initial inner pressure of the pore and the flow stress of the bulk metal. Since the inner pressure of the pore balances with the flow stress of bulk metal at the interface, the temperature affects the evolution behavior of the pore through its influence on the flow stress of the bulk metal primarily.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2119-2124

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. 56 (2014) 862-871.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[2] B. Q. Xiong, X. W. Li, Y. A. Zhang, Z. H. Li, F. Wang, H. W. Liu, Development of 7xxx series aluminum alloy with high strength high toughness and low quench sensitivity (In Chinese), Mater. China. 33(2014) 114-119.

Google Scholar

[3] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng., A. 280 (2000) 102-107.

DOI: 10.1016/s0921-5093(99)00674-7

Google Scholar

[4] J. Schubbe, Plate thickness variation effects on crack growth rates in 7050-t7451 alloy thick plate, J. Mater. Eng. Perform. 20 (2011) 147-154.

DOI: 10.1007/s11665-010-9657-6

Google Scholar

[5] V. M. Polyanskii, Role of hydrogen embrittlement in the corrosion cracking of aluminum alloys, Soviet Mater. Sci. 21 (1986) 301-309.

DOI: 10.1007/bf00726550

Google Scholar

[6] L. Wei, Q. Pan, Y. Wang, L. Feng, H. Huang, Characterization of Fracture and Fatigue Behavior of 7050 Aluminum Alloy Ultra-thick Plate, J. Mater. Eng. Perform. 22 (2013) 2665-2672.

DOI: 10.1007/s11665-013-0561-8

Google Scholar

[7] J. Zhang, M. Przystupa, A. Luévano, Characterizations of pore and constituent particle populations in 7050-T7451 aluminum plate alloys, Metall. Mater. Trans. A. 29 (1998) 727-737.

DOI: 10.1007/s11661-998-0263-2

Google Scholar

[8] P. D. Lee, A. Chirazi, D. See, Modeling microporosity in aluminum–silicon alloys: a review, J. Light Met. 1 (2001) 15-30.

DOI: 10.1016/s1471-5317(00)00003-1

Google Scholar

[9] P. D. Lee, R. C. Atwood, R. J. Dashwood, H. Nagaumi, Modeling of porosity formation in direct chill cast aluminum–magnesium alloys, Mater. Sci. Eng., A. 328 (2002) 213-222.

DOI: 10.1016/s0921-5093(01)01687-2

Google Scholar

[10] A. Chaijaruwanich, R. J. Dashwood, P. D. Lee, H. Nagaumi, Pore evolution in a direct chill cast Al–6 wt. % Mg alloy during hot rolling, Acta Mater. 54 (2006) 5185-5194.

DOI: 10.1016/j.actamat.2006.06.029

Google Scholar

[11] H. Toda, K. Minami, K. Koyama, K. Ichitani, M. Kobayashi, K. Uesugi, Y. Suzuki, Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation, Acta Mater. 57 (2009) 4391-4403.

DOI: 10.1016/j.actamat.2009.06.012

Google Scholar

[12] A. Wang, P. F. Thomson, P. D. Hodgson, A study of pore closure and welding in hot rolling process, J. Mater. Process. Technol. 60 (1996) 95-102.

DOI: 10.1016/0924-0136(96)02313-8

Google Scholar

[13] M. Saby, P. O. Bouchard, M. Bernacki, Void closure criteria for hot metal forming: A review, J. Mater. Manuf. Process. 19(2015) 239-250.

DOI: 10.1016/j.jmapro.2014.05.006

Google Scholar

[14] A. Chaijaruwanich, P. D. Lee, R. J. Dashwood, Y. M. Youssef, H. Nagaumi, Evolution of pore morphology and distribution during the homogenization of direct chill cast Al–Mg alloys, Acta Mater. 55 (2007) 285-293.

DOI: 10.1016/j.actamat.2006.08.023

Google Scholar

[15] C. Feng, Z. Cui, A 3-D model for void evolution in viscous materials under large compressive deformation, Int. J. Plast. 74(2015) 192-212.

DOI: 10.1016/j.ijplas.2015.06.012

Google Scholar

[16] M. Saby, M. Bernacki, E. Roux, P. O. Bouchard, Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes, Comput. Mater. Sci. 77(2013) 194-201.

DOI: 10.1016/j.commatsci.2013.05.002

Google Scholar