[1]
T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. 56 (2014) 862-871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[2]
B. Q. Xiong, X. W. Li, Y. A. Zhang, Z. H. Li, F. Wang, H. W. Liu, Development of 7xxx series aluminum alloy with high strength high toughness and low quench sensitivity (In Chinese), Mater. China. 33(2014) 114-119.
Google Scholar
[3]
A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng., A. 280 (2000) 102-107.
DOI: 10.1016/s0921-5093(99)00674-7
Google Scholar
[4]
J. Schubbe, Plate thickness variation effects on crack growth rates in 7050-t7451 alloy thick plate, J. Mater. Eng. Perform. 20 (2011) 147-154.
DOI: 10.1007/s11665-010-9657-6
Google Scholar
[5]
V. M. Polyanskii, Role of hydrogen embrittlement in the corrosion cracking of aluminum alloys, Soviet Mater. Sci. 21 (1986) 301-309.
DOI: 10.1007/bf00726550
Google Scholar
[6]
L. Wei, Q. Pan, Y. Wang, L. Feng, H. Huang, Characterization of Fracture and Fatigue Behavior of 7050 Aluminum Alloy Ultra-thick Plate, J. Mater. Eng. Perform. 22 (2013) 2665-2672.
DOI: 10.1007/s11665-013-0561-8
Google Scholar
[7]
J. Zhang, M. Przystupa, A. Luévano, Characterizations of pore and constituent particle populations in 7050-T7451 aluminum plate alloys, Metall. Mater. Trans. A. 29 (1998) 727-737.
DOI: 10.1007/s11661-998-0263-2
Google Scholar
[8]
P. D. Lee, A. Chirazi, D. See, Modeling microporosity in aluminum–silicon alloys: a review, J. Light Met. 1 (2001) 15-30.
DOI: 10.1016/s1471-5317(00)00003-1
Google Scholar
[9]
P. D. Lee, R. C. Atwood, R. J. Dashwood, H. Nagaumi, Modeling of porosity formation in direct chill cast aluminum–magnesium alloys, Mater. Sci. Eng., A. 328 (2002) 213-222.
DOI: 10.1016/s0921-5093(01)01687-2
Google Scholar
[10]
A. Chaijaruwanich, R. J. Dashwood, P. D. Lee, H. Nagaumi, Pore evolution in a direct chill cast Al–6 wt. % Mg alloy during hot rolling, Acta Mater. 54 (2006) 5185-5194.
DOI: 10.1016/j.actamat.2006.06.029
Google Scholar
[11]
H. Toda, K. Minami, K. Koyama, K. Ichitani, M. Kobayashi, K. Uesugi, Y. Suzuki, Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation, Acta Mater. 57 (2009) 4391-4403.
DOI: 10.1016/j.actamat.2009.06.012
Google Scholar
[12]
A. Wang, P. F. Thomson, P. D. Hodgson, A study of pore closure and welding in hot rolling process, J. Mater. Process. Technol. 60 (1996) 95-102.
DOI: 10.1016/0924-0136(96)02313-8
Google Scholar
[13]
M. Saby, P. O. Bouchard, M. Bernacki, Void closure criteria for hot metal forming: A review, J. Mater. Manuf. Process. 19(2015) 239-250.
DOI: 10.1016/j.jmapro.2014.05.006
Google Scholar
[14]
A. Chaijaruwanich, P. D. Lee, R. J. Dashwood, Y. M. Youssef, H. Nagaumi, Evolution of pore morphology and distribution during the homogenization of direct chill cast Al–Mg alloys, Acta Mater. 55 (2007) 285-293.
DOI: 10.1016/j.actamat.2006.08.023
Google Scholar
[15]
C. Feng, Z. Cui, A 3-D model for void evolution in viscous materials under large compressive deformation, Int. J. Plast. 74(2015) 192-212.
DOI: 10.1016/j.ijplas.2015.06.012
Google Scholar
[16]
M. Saby, M. Bernacki, E. Roux, P. O. Bouchard, Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes, Comput. Mater. Sci. 77(2013) 194-201.
DOI: 10.1016/j.commatsci.2013.05.002
Google Scholar