Processing and Thermoelectric Properties of New Si-/ Se-/ Sn-Based Intermetallics

Article Preview

Abstract:

Global warming is the driving force for developing new functional thermoelectric generators based on new materials which contain at least one of the elements Si, Se, or Sn. We describe four processing methods and their characterization by SEM and thermoelectric properties. The earth-abundant Mg2Si requires the method of cyclic hydrogen loading, which has two advantages: It suppresses the oxide formation, and promotes the driving force for formation of the intermetallic phase. While the clathrate BaCuSi and the Half-Heusler alloy (TiZr)NiSn, as most intermetallic alloys, can economically be produced by arc-melting, the Se-alloys CuTiSe and CuFeSe need to be processed by the powder-in-tube method and their Seebeck-voltage measurements up to +/- 0.04 mV/K and output power of 4 μW at ΔT= 400 K are reported here for the first time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2131-2137

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Schierning, R. Chavez, R. Schmechel, B. Balke, G. Rogl, P. Rogl, Transl. Mater. Res. 2 (2015) 025001.

DOI: 10.1088/2053-1613/2/2/025001

Google Scholar

[2] W. Wunderlich, Eng. Harvest. Systems 1-2 (2015) 37-42, doi: 10. 1515/ehs-2014-0013.

Google Scholar

[3] W. Wunderlich, MRS Proc 1128 (2009), doi: 10. 1557/PROC-1128-U01-10.

Google Scholar

[4] A.U. Khan, N.V. Vlachos, E. Hatzikraniotis, G.S. Polymeris, Ch.B. Lioutas, E.C. Stefanaki, K.M. Paraskevopoulos, I. Giapintzakis, Th. Kyratsi, Acta Mat. 77 (2014) 43-53.

DOI: 10.1016/j.actamat.2014.04.060

Google Scholar

[5] W. Wunderlich , M. Sato et al., Inorganics 2 (2014) 351-362; doi: 10. 3390/inorganics2020351.

Google Scholar

[6] Z. Zhao, G. Niehues, S. Funkner, E. Estacio, M. Tani, et al. Appl. Phys. Lett 105 (2014) 231104.

Google Scholar

[7] Q. Hua Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M.S. Strano, Nature nanotech. 7 (2012) 699-712.

DOI: 10.1038/nnano.2012.193

Google Scholar

[8] Y. He , T. Day , T. Zhang , H. Liu , X. Shi , Li. Chen , G. J. Snyder Adv. Mater. 2014, 26, 3974–3978.

Google Scholar

[9] G. Rogl. P. Rogl, Aata Mat (2015) DOI: 10. 1016/j. actamat. 2015. 05. 024.

Google Scholar

[10] G. Rogl, A. Grytsiv, et al., Phys. Chem. Chem. Phys. 17 (2015) 3715.

Google Scholar

[11] M. Gürth, G. Rogl, *, V.V. Romaka, A. Grytsiv, E. Bauer, P. Rogl, Acta Materialia 104 (2016) 210e222.

DOI: 10.1016/j.actamat.2015.11.022

Google Scholar

[12] C. V. Renaud, L. R. Motowidlo, T. Wong, IEEE Trans. Appl. Supercond. 13.

Google Scholar

[2] (2003) 3490- 3493.

Google Scholar

[13] W. Wunderlich, M. Amano, Y. Matsumura, J. Elec. Mat. 43.

Google Scholar

[6] (2014) 1527-1532.

Google Scholar

[14] W. Wunderlich et al., J. Elec. Mat. 40.

Google Scholar

[5] 583-588 (2011), doi: 10. 1007/s11664-010-1461-4.

Google Scholar

[15] X. Yan, M. X. Chen, S. Laumann, E. Bauer, P. Rogl, R. Podloucky, and S. Paschen, Phys. Rev. B 85 (2012) 165127.

Google Scholar

[16] W. Wunderlich et al., J. Elec. Mat. 42.

Google Scholar

[10] (2013) doi: 10. 1007/s11664-013-2770-1.

Google Scholar

[17] W. K. McDonald and C. W. Curtis, IEEE Transact. Magn. 19.

Google Scholar

[3] (1983) 1124-1127.

Google Scholar

[18] W. Wunderlich, Metals 4 (2014) 410-427 doi: 10. 3390/met4030410.

Google Scholar