Continuous Modeling of Dislocation Cores Using a Mechanical Theory of Dislocation Fields

Article Preview

Abstract:

A one-dimensional model of an elasto-plastic theory of dislocation fields is developed to model planar dislocation core structures. This theory is based on the evolution of polar dislocation densities. The motion of dislocations is accounted for by a dislocation density transport equation where dislocation velocities derive from Peach-Koehler type driving forces. Initial narrow dislocation cores are shown to spread out by transport under their own internal stress field and no relaxed configuration is found. A restoring stress of the lattice is necessary to stop this infinite relaxation and it is derived from periodic sinusoidal energy of the crystal. When using the Peierls sinusoidal potential, a compact equilibrium core configuration corresponding to the Peierls analytical solution is obtained. The model is then extended to use generalized planar stacking fault energies as an input and is applied to the determination of properties of planar dislocation cores in crystalline materials. Dissociations of edge and screw dislocation cores in basal and prismatic planes of Zirconium are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2456-2462

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Peierls, Proc. Phys. Soc. 52, 34 (1940).

Google Scholar

[2] F.R.N. Nabarro, Proc. Phys. Soc. 59, 256 (1947).

Google Scholar

[3] B. Joos, Q. Ren, M.S. Duesbery, Phys. Rev. B 50, 5890 (1994).

Google Scholar

[4] J. Hartford, B. von Sydow, G. Wahnström, B. I. Lundqvist, Phys. Rev. B 58, 2488 (1998).

Google Scholar

[5] G. Lu, N. Kioussis, V. V Bulatov, E. Kaxiras, Phys. Rev. B 62, 3099 (2000).

Google Scholar

[6] G. Schoek, Mater. Sci. Eng. A 558, 162 (2012).

Google Scholar

[7] J. Wang, H. Sehitoglu, H.J. Maier, Int. J. Plasticity 54, 247-266 (2014).

Google Scholar

[8] A. Acharya, J. Mech. Phys. Solids, 49, 761 (2001).

Google Scholar

[9] J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall., 1, 153 (1953).

DOI: 10.1016/0001-6160(53)90054-6

Google Scholar

[10] A. Acharya, Proc. Royal Society, A 459, 1343 (2003).

Google Scholar

[11] E. Kröner, Continuum model of defects, in Physics of Defects, Ed. R. Balian et al., North Holland, Amsterdam, 218 (1980).

Google Scholar

[12] S. Berbenni, V. Taupin, K.S. Djaka, C. Fressengeas, Int. J. Solids Structures 51, 4157 (2014).

DOI: 10.1016/j.ijsolstr.2014.08.009

Google Scholar

[13] C. Fressengeas, V. Taupin, L. Capolungo, Int. J. Solids Structures 48, 3499 (2011).

Google Scholar

[14] X. Zhang, A. Acharya, N.J. Walkington, J. Bielak, J. Mech. Phys. Solids 84, 145 (2015).

Google Scholar

[15] C. Shen, Y. Wang, Acta Mater. 52, 683 (2004).

Google Scholar

[16] http: /www. vasp. at.

Google Scholar

[17] A. Poty, J.M. Raulot, H. Xu, J. Bai, C. Schuman, J.S. Lecomte, M.J. Phillipe, C. Esling, J. Appl. Phys. 110, 014905 (2011).

Google Scholar

[18] C. Denoual, Comput. Methods Appl. Mech. Eng. 196, 1915 (2007).

Google Scholar