Effects of Magnetic Field Intensity on Carbon Diffusion in Pure Iron in Paramagnetic Ferrite Region

Article Preview

Abstract:

Effects of magnetic field intensity on carbon diffusion in pure iron in paramagnetic ferrite region above the Curie temperature were investigated using carburizing technology. It was found that the magnetic field intensity can significantly affect the carbon diffusion behavior in pure iron in paramagnetic ferrite region in the direction parallel to the magnetic field direction, both the carbon diffusion coefficient and the average carbon diffusion distance increase gradually with the increasing of the magnetic field intensity. Magnetic field annealing obviously promotes the carbon diffusion in pure iron in the direction parallel to the magnetic field in paramagnetic ferrite region above the Curie temperature, and promotion effect increases with the enhancement of the magnetic field intensity. The structure defects made by the magnetic field may cause the increasing of carbon diffusion flux.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2434-2438

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, M. Date M, Effect of magnetic fields on athermal and isothermal martensitic transformations in Fe-Ni-Mn alloys, Mater. Trans. JIM 34(5) (1993) 415-422.

DOI: 10.2320/matertrans1989.34.415

Google Scholar

[2] T. Kakeshita, Y. Sato, T. Saburi. Effects of magnetic field on thermal and isothermal martensitic transformations in Fe-Ni-Cr alloys, Mater. Trans. JIM 40(2) (1999) 100-106.

DOI: 10.2320/matertrans1989.40.100

Google Scholar

[3] T. Shimozono, Y. Kohno, H. Konishi, K. Shibata, H. Ohtsuka, H. Wada, Effects of pre-strain, heat treatments and magnetic fields on a' martensite formation in Fe-25. 5%Ni-3-5%Cr alloys, Mater. Sci. Engi. A A273-275(1999) 337-341.

DOI: 10.1016/s0921-5093(99)00425-6

Google Scholar

[4] H. Ohtsuka H, Effect of a high magnetic field on diffusional transformation behavior and structure, Mater. Jpn. 40(6) (2001) 552-555.

Google Scholar

[5] M. Enomoto, H. Guo, Y. Tazuke, Y. R. Abe, M. Shimotomai, Influence of magnetic field on the kinetics of proeutectoid ferrite transformation in iron alloys, Metall. Mater. Trans. 32A (2001) 445-453.

DOI: 10.1007/s11661-001-0061-6

Google Scholar

[6] Y. D. Zhang, C. S. He, X. Zhao, L. Zuo, C. Esling, J. C. He, New microstructural features occurring during transformation from austenite to ferrite under kinetic influence of magnetic field in a medium carbon steel, J. Magn. Magn. Mater. 284(2004).

DOI: 10.1016/j.jmmm.2004.06.048

Google Scholar

[7] Y. D. Zhang, N. Gey, C. S. He, X. Zhao, L. Zuo, High temperature tempering behaviors in a structural steel under high magnetic field, Acta Mater. 52(2004) 3467-3474.

DOI: 10.1016/j.actamat.2004.03.044

Google Scholar

[8] Z. N. Zhou, K. M. Wu, Molybdenum carbide precipitation in a Fe-C-Mo alloy under a high magnetic field, Scripta Mater. 61(2009) 670-673.

DOI: 10.1016/j.scriptamat.2009.05.021

Google Scholar

[9] Z. X. Xia, C. Zhang, Z. Q. Liu, Z. G. Yang, Effect of magnetic field on interfacial energy and precipitation behavior of carbides in reduced activation steels, Mater. Lett. 65(2011) 937-939.

DOI: 10.1016/j.matlet.2010.12.041

Google Scholar

[10] T. P. Hou, K. M. Wu, Alloy carbide precipitation in the tempered 2. 25Cr-Mo steel under high magnetic field, Acta Mater. 67(2013) 2016-(2024).

DOI: 10.1016/j.actamat.2012.12.021

Google Scholar

[11] T. P. Hou, Y. Li Y, K. M. Wu, M. J. Peet, C. N. Hulme-Smith, L. Guo, Magnetic-field-induced magnetism and thermal stability of carbides Fe6-xMoxC in molybdenum-containing steels [J]. Acta Mater. 102(2016) 24-31.

DOI: 10.1016/j.actamat.2015.09.029

Google Scholar

[12] Y. Wu, Z. W. Zhang, L. Tong, X. Zhao, Effect of high magnetic field on carbide precipitation in W6Mo5Cr4V3 high-speed steel during low temperature tempering, Int. J. Mater. Res. 107(4) (2016) 356-361.

DOI: 10.3139/146.111352

Google Scholar

[13] S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida, A. Chiba, Diffusion of carbon and titanium in γ-iron in a magnetic field and a magnetic field gradient, J. Mater. Sci. 40 (2005) 3191-3198.

DOI: 10.1007/s10853-005-2683-3

Google Scholar

[14] H. Ohtsuka, Structural control of Fe-based alloys through phase transformations in a high magnetic field, CAMP-ISIJ 19 (2006) 791.

Google Scholar

[15] H. Fujii, S. Tsurekawa, Diffusion of carbon in iron under magnetic fields, Phys. Rev. B 83 (2011) 054412 (1-12).

Google Scholar

[16] Y. Wu, G. S. Duan, Y. Lu, X. Zhao, L. Zuo, Effects of magnetic field annealing on carburizing in pure iron, Steel Res. Int. 82 (2011) 1404-1407.

DOI: 10.1002/srin.201100117

Google Scholar

[17] Y. Wu, G. S. Duan, X. Zhao, Effects of magnetic field intensity on carbon diffusion coefficient in pure iron in γ-Fe temperature region, Inter. J. Modern Phys. B 29 (2015) 1540001(1-7).

DOI: 10.1142/s0217979215400019

Google Scholar

[18] Y. Wu, H. H. Li, G. S. Duan, X. Zhao, Effects of magnetic field intensity on carbon diffusion behavior in pure iron in α-Fe temperature region, the 8th international conference on electromagnetic processing of materials, 2015, Cannes, France, 399-402.

Google Scholar

[19] J. K. Choi, H. Ohtsuka, Y. Xu, W.Y. Choo, Effects of a strong magnetic field on the phase stability of plain carbon steels, Scripta Mater. 43 (2000) 221-226.

DOI: 10.1016/s1359-6462(00)00394-8

Google Scholar