[1]
B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Prog. Mater. Sci. 56 (2011) 1-108.
DOI: 10.1016/j.pmatsci.2010.04.003
Google Scholar
[2]
J. Xiao, S. Chaudhuri, Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes, Langmuir 28 (2012) 4434-4446.
DOI: 10.1021/la2034565
Google Scholar
[3]
Y. Huang, D.K. Sarkar, D. Gallant, X. Grant Chen, Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process, App. Surf. Sci. 282 (2013) 689-694.
DOI: 10.1016/j.apsusc.2013.06.034
Google Scholar
[4]
Y. Zhou, W. Yi-Zhi, Y. Yi-Fan, G. Mao-Gang, A simple way to fabricate an aluminum sheet with superhydrophobic and self-cleaning properties, Chin. Phys. B 21 (2012) 126801.
DOI: 10.1088/1674-1056/21/12/126801
Google Scholar
[5]
F. Li, X. Geng, Z. Chen, L. Zhao, A novel and expeditious method to fabricate superhydrophobic metal carboxylate surface, Appl. Phys. A 106 (2012) 35–40.
DOI: 10.1007/s00339-011-6657-9
Google Scholar
[6]
J. Song, W. Xu, X. Liu, Y. Lu, Z. Wei, L. Wu, Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method, Chem. Eng. J. 211–212 (2012) 143–152.
DOI: 10.1016/j.cej.2012.09.094
Google Scholar
[7]
A. Hozumi, D. Cheng, M. Yagihashi, Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis, J. Colloid Interface Sci. 353 (2011) 582–587.
DOI: 10.1016/j.jcis.2010.09.075
Google Scholar
[8]
L. Yao, M. Zheng, L. Ma, W. Li, W. Shen, Self-assembly of diverse alumina architectures and their morphology-dependent wettability, Mater. Res. Bull. 46 (2011) 1403–1408.
DOI: 10.1016/j.materresbull.2011.05.018
Google Scholar
[9]
A.M. Escobar, N. Llorca-Isern, Superhydrophobic coating deposited directly on aluminium, Appl. Surf. Sci. 305 (2014) 774-782.
DOI: 10.1016/j.apsusc.2014.03.196
Google Scholar
[10]
A.M. Escobar, N. Llorca-Isern, O. Rius-Ayra, Identification of the mechanism that confers superhydrophobicity on 316L stainless steel, Mat. Char. 111 (2016) 162-169.
DOI: 10.1016/j.matchar.2015.11.026
Google Scholar
[11]
Y. Wan, Z. Wang, Z. Xu, C. Liu, J. Zhang, Fabrication and wear protection performance of superhydrophobic surface on zinc, App. Surf. Sci. 257 (2011), 7486-7489.
DOI: 10.1016/j.apsusc.2011.03.060
Google Scholar
[12]
J. Ou, W. Hu, M. Xue, F. Wang, W. Li, One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys, ACS Appl. Mater. Interfaces 5 (2013) 9867-9871.
DOI: 10.1021/am402303j
Google Scholar
[13]
N. Saleema, D.K. Sarkar, R.W. Paynter, X. Chen, Superhydrophobic aluminum alloy surfaces by a novel one-step process, ACS Appl. Mater. Interfaces 2 (2010) 2500–2502.
DOI: 10.1021/am100563u
Google Scholar
[14]
S. Peng, D. Tian, X. Yang, W. Deng, Designing robust alumina nanowires-on nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion J. Colloid Interface Sci. 409 (2013) 18–24.
DOI: 10.1016/j.jcis.2013.07.059
Google Scholar
[15]
Y. Zhang, Q. Chen, E. Kim, H. Sun, Biomimetic grapheme films and their properties, Nanoscale 4 (2012) 4858-4869.
Google Scholar
[16]
T. Darmanin, F. Guittard, Homogeneous growth of conducting polymer nanofibers by electrodeposition for superhydrophobic and superoleophilic stainless steel meshes, RSC Adv. 4 (2014) 50401-50405.
DOI: 10.1039/c4ra08938c
Google Scholar