Stereolithographic Additive Manufacturing of Ceramic Components by Using Nanoparticle Paste Feeding

Article Preview

Abstract:

Titania and alumina photonic crystals were fabricated by using stereolithographic additive manufacturing to control electromagnetic waves in terahertz frequency. Micro ceramic patterns were designed spatially by graphic software. Photosensitive liquid resin with ceramic particles were spread onto a grass substrate by mechanical knife edge, and two dimensional (2D) images were drawn using fine pattern exposing to create a cross sectional solid layer. After stacking these layers, the obtained three dimensional (3D) structures of composite precursors are dewaxed and sintered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2485-2488

Citation:

Online since:

November 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Ohtaka, Physical Review B, 19.

Google Scholar

[10] (1979) 5057-5067.

Google Scholar

[2] E. Yablonovitch, Physical Review Letter, 58.

Google Scholar

[20] (1987) 2059-(2062).

Google Scholar

[3] K. M. Ho, C. T. Chan, and C. M. Soukoulis, Physical Review Letter, 65.

Google Scholar

[25] (1990) 3152-3165.

Google Scholar

[4] B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, Journal of Applied Physics, 87.

Google Scholar

[1] (2000) 603-605.

Google Scholar

[5] S. John, Physical Review Letter, 58.

Google Scholar

[23] (1987) 2486-2489.

Google Scholar

[6] H. Takano, B. S. Song, T. Asano, S. Noda, Applied Physics Letters, 86.

Google Scholar

[24] (2005) 241101-1-3.

Google Scholar

[7] S. Kirihara, M. W. Takeda, K. Sakoda, Y. Miyamoto, Solid State Comm., 124.

Google Scholar

[4] (2002) 135-139.

Google Scholar

[8] S. Kanehira, S. Kirihara, and Y. Miyamoto, J. American Ceramic Society, 88.

Google Scholar

[6] (2005) 1461-1464.

Google Scholar

[9] M. Suwa, S. Kirihara, T. Soumura, Ceramic Transactions, 219 (2009) 331-336.

Google Scholar

[10] S. Kirihara, M. Kaneko, T. Niki, International Journal of Applied Ceramics Technology, 6.

Google Scholar

[1] (2009) 41-44.

Google Scholar

[11] M. Exter, C. Fattinger, and D. Grischkowsky, Optics Letters, 14.

Google Scholar

[20] (1989) 1128-1130.

Google Scholar

[12] D. Clery, Science, 297 (2002) 761- 763.

Google Scholar

[13] K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, Optics Express, 11.

Google Scholar

[20] (2003) 2549-2554.

Google Scholar

[14] R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, Journal of Biological Physics, 29 [2-3] (2003) 257-259.

DOI: 10.1023/a:1024409329416

Google Scholar

[15] V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, The British Journal of Dermatology, 151.

Google Scholar

[2] (2004) 424–432.

Google Scholar

[16] Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, NDT&E International, 42.

Google Scholar

[1] (2008) 28-33.

Google Scholar