Friction Stir Processing at High Rotation Rates of a Magnesium Alloy: Mechanical Properties at High Temperatures and Microstructure

Article Preview

Abstract:

A high-pressure die-cast magnesium alloy plate was friction stir processed at high rotation rates with different advancing speeds. The stirred zone was very narrow around the tool and this made the friction stir process difficult to occur in the whole thickness of the plate. Intermetallic-phase network at grain boundaries was refined due to partial dissolution and fragmentation of Mg17Al12 β-phase during the friction stir process; the likely increment of solute content in solid solution was exploited for aging to improve hardness. The ductility of friction stir processed samples deformed at 300° and 350°C substantially increased compared to the base material and to room temperature strained samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

295-300

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mat. Sci. Eng. R 50 (2005) 1–78.

Google Scholar

[2] Z.Y. Ma, R.S. Pilchak, M.C. Juhas, J.C. Williams, Microstructural refinement and property enhancement of cast light alloys via friction stir processing, Scripta Mater. 58 (2008) 361–366.

DOI: 10.1016/j.scriptamat.2007.09.062

Google Scholar

[3] U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, C.W. Lee, Grain structure evolution during friction-stir welding of AZ31 magnesium alloy, Acta Mater. 57 (2009) 5406–18.

DOI: 10.1016/j.actamat.2009.07.041

Google Scholar

[4] V. Jain, J.Q. Su, R.S. Mishra, R. Verma, A. Javaid, M. Aljarrah, M. Essadiqi, Effect of heat index on microstructure and mechanical behavior of friction stir processed AZ31, Magnesium Technology (2011).

DOI: 10.1002/9781118062029.ch104

Google Scholar

[5] E. Cerri, P. Leo, P.P. De Marco, Hot compression behaviour of the AZ91 magnesium alloy produced by high pressure die casting, J. Mat. Proc. Techn. 189 (2007) 97-106.

DOI: 10.1016/j.jmatprotec.2007.01.010

Google Scholar

[6] D. Duly, J.P. Simon, Y. Brechet, On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys, Acta Metall. Mater. 43 (1995) 101–106.

DOI: 10.1016/0956-7151(95)90266-x

Google Scholar

[7] K.N. Braszczyn´ska-Malik, Discontinuous and continuous precipitation in magnesium–aluminium type alloys, J. Al. Comp. 477 (2009) 870–876.

DOI: 10.1016/j.jallcom.2008.11.008

Google Scholar

[8] S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation, Mat. Sci. Eng. A527 (2009) 52.

DOI: 10.1016/j.msea.2009.08.062

Google Scholar

[9] A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater. 49 (2001) 1199-1207.

DOI: 10.1016/s1359-6454(01)00020-9

Google Scholar

[10] X. Yang, H. Miura, T. Sakai, Dynamic Evolution of New Grains in Magnesium Alloy AZ31 during Hot Deformation, Mater. Trans. 44 (2003) 197-203.

DOI: 10.2320/matertrans.44.197

Google Scholar

[11] J.A. Valle, M. Prado, O.A. Ruano, Texture evolution during large-strain hot rolling of the Mg AZ61 alloy, Mat. Sci. Eng. A 355 (2003) 68-74.

DOI: 10.1016/s0921-5093(03)00043-1

Google Scholar

[12] S.E. Ion, F.J. Humphreys, S.H. White, Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium, Acta Mater. 30 (1982) (1909).

DOI: 10.1016/0001-6160(82)90031-1

Google Scholar

[13] H.L. Ding, L.F. Liu, S. Kamado, W.J. Ding, Y. Kojima, Study of the microstructure, texture and tensile properties of as-extruded AZ91 magnesium alloy, J. Al. Comp. 456 (2008) 400-6.

DOI: 10.1016/j.jallcom.2007.02.045

Google Scholar

[14] A. Jain, S.R. Agnew, Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet, Mat. Sci. Eng. A462 (2007) 29–36.

DOI: 10.1016/j.msea.2006.03.160

Google Scholar

[15] O. Sitdikov, R. Kaibyshev, T. Sakai, Microstructural Development during Hot Working of Mg-3Al-1Zn, Mat. Sci. Forum419-422 (2003) 521-526.

Google Scholar

[16] E. Cerri, P. Leo, F. Palma, M. Simoncini, M. Pieralisi, A. Forcellese, F. Gabrielli, Friction stir processing su AZ91 hpdc: caratterizzazione meccanica e microstrutturale, (2012).

Google Scholar