Creep Tendencies of Cu-Al Thin Wires Submitted to Moderate Temperature Conditions: Influence of Intermetallic Compounds

Article Preview

Abstract:

X-Ray analysis was performed on copper-clad aluminum wires at 423 K and 673 K to follow their microstructural evolution and understand their strain behavior under creep deformation, potential operating load in automotive industry. The lifetime of the wires is found to be strongly dependent on the existence of an initial heat treatment and on the applied stress. Annealed drawn wires verify a traditional Norton law in the overall range of the stress level. Raw drawn wires exhibit a distinct two stage behavior with a breakdown around an applied stress of 0.7 times the yield stress. It is shown in this work that the intermetallic compounds between copper and aluminum play only the role of a mechanical bounding without affecting the strain rate of the wires.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

631-636

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Bokshitskii, A. Glezer, E. Zakharov, G. Sveshnikova, Structure and electrical properties of heat-resistant bimetallic conductors, Met. Sci. Heat. Treat. 39 (1997) 38-41.

DOI: 10.1007/bf02467210

Google Scholar

[2] G. Heness, R. Wuhrer, W.Y. Yeung, Effect of annealing on the interfacial structure of aluminum-copper joints, Mater. Sci. Eng. A 483-484 (2008) 740-742.

DOI: 10.1016/j.msea.2006.09.184

Google Scholar

[3] X. Li, G. Zu, P. Wang, Effect of strain rate on tensile performance of Al/Cu/Al laminated composites produced by asymmetrical roll bonding, Mater. Sci. Eng. A 575 (2013) 61-64.

DOI: 10.1016/j.msea.2013.03.056

Google Scholar

[4] S. Berski, H. Dyja, A. Maranda, J. Nowaczewski, G. Banaszek, Quality of bimetal Al-Cu joint after explosive cladding, J. Mat. Proc. Techn. 177 (2006) 582-586.

DOI: 10.1016/j.jmatprotec.2006.04.107

Google Scholar

[5] T. Sapanathan, S. Khoddam, S.H. Zahiri, Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods: A study of bond strength and interfacial characteristics, J. Alloy. Compd. 571 (2013) 85-92.

DOI: 10.1016/j.jallcom.2013.03.210

Google Scholar

[6] C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou, H.H. Wang, Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging, Microelec. Rel. 48 (2008) 416-424.

DOI: 10.1016/j.microrel.2007.06.008

Google Scholar

[7] M. Braunovic, N. Alexandrov, Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current, IEEE Trans Comp. Pack. Manufact. Techn. 17 (1994) 78-84.

DOI: 10.1109/95.296372

Google Scholar

[8] W. -B. Lee, K. -S. Bang, S. -B. Jung, Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing J. Alloy. Compd. 390 (2005) 212-219.

DOI: 10.1016/j.jallcom.2004.07.057

Google Scholar

[9] K.Y. Rhee, W.Y. Han, H.J. Park, S.S. Kim, Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, Mater. Sci. Eng. A 384 (2004) 70-76.

DOI: 10.1016/j.msea.2004.05.051

Google Scholar

[10] E. Hug, N. Bellido, Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires, Mater. Sci. Eng. A 528 (2011) 7103-7106.

DOI: 10.1016/j.msea.2011.05.077

Google Scholar

[11] F.H. Norton, The Creep of Steels at high Temperatures, McGraw-Hill, New York, (1929).

Google Scholar

[12] W. D. Jenkins and T. G. Digges, Journal of Research of the National Bureau of Standards 45 (1950) 153.

Google Scholar

[13] S. Straub, W. Blum, H. Maier, T. Ungar, A. Borbély, and H. Renner, Acta Materialia 44 (1996) 4337.

DOI: 10.1016/1359-6454(96)00104-8

Google Scholar

[14] A. Gueydan, E. Hug, B. Domengès, Study of the intermetallic growth in copper-clad aluminum wires after thermal aging, Intermetallics 50 (2014) 34-42.

DOI: 10.1016/j.intermet.2014.02.007

Google Scholar