[1]
V. Bokshitskii, A. Glezer, E. Zakharov, G. Sveshnikova, Structure and electrical properties of heat-resistant bimetallic conductors, Met. Sci. Heat. Treat. 39 (1997) 38-41.
DOI: 10.1007/bf02467210
Google Scholar
[2]
G. Heness, R. Wuhrer, W.Y. Yeung, Effect of annealing on the interfacial structure of aluminum-copper joints, Mater. Sci. Eng. A 483-484 (2008) 740-742.
DOI: 10.1016/j.msea.2006.09.184
Google Scholar
[3]
X. Li, G. Zu, P. Wang, Effect of strain rate on tensile performance of Al/Cu/Al laminated composites produced by asymmetrical roll bonding, Mater. Sci. Eng. A 575 (2013) 61-64.
DOI: 10.1016/j.msea.2013.03.056
Google Scholar
[4]
S. Berski, H. Dyja, A. Maranda, J. Nowaczewski, G. Banaszek, Quality of bimetal Al-Cu joint after explosive cladding, J. Mat. Proc. Techn. 177 (2006) 582-586.
DOI: 10.1016/j.jmatprotec.2006.04.107
Google Scholar
[5]
T. Sapanathan, S. Khoddam, S.H. Zahiri, Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods: A study of bond strength and interfacial characteristics, J. Alloy. Compd. 571 (2013) 85-92.
DOI: 10.1016/j.jallcom.2013.03.210
Google Scholar
[6]
C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou, H.H. Wang, Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging, Microelec. Rel. 48 (2008) 416-424.
DOI: 10.1016/j.microrel.2007.06.008
Google Scholar
[7]
M. Braunovic, N. Alexandrov, Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current, IEEE Trans Comp. Pack. Manufact. Techn. 17 (1994) 78-84.
DOI: 10.1109/95.296372
Google Scholar
[8]
W. -B. Lee, K. -S. Bang, S. -B. Jung, Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing J. Alloy. Compd. 390 (2005) 212-219.
DOI: 10.1016/j.jallcom.2004.07.057
Google Scholar
[9]
K.Y. Rhee, W.Y. Han, H.J. Park, S.S. Kim, Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, Mater. Sci. Eng. A 384 (2004) 70-76.
DOI: 10.1016/j.msea.2004.05.051
Google Scholar
[10]
E. Hug, N. Bellido, Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires, Mater. Sci. Eng. A 528 (2011) 7103-7106.
DOI: 10.1016/j.msea.2011.05.077
Google Scholar
[11]
F.H. Norton, The Creep of Steels at high Temperatures, McGraw-Hill, New York, (1929).
Google Scholar
[12]
W. D. Jenkins and T. G. Digges, Journal of Research of the National Bureau of Standards 45 (1950) 153.
Google Scholar
[13]
S. Straub, W. Blum, H. Maier, T. Ungar, A. Borbély, and H. Renner, Acta Materialia 44 (1996) 4337.
DOI: 10.1016/1359-6454(96)00104-8
Google Scholar
[14]
A. Gueydan, E. Hug, B. Domengès, Study of the intermetallic growth in copper-clad aluminum wires after thermal aging, Intermetallics 50 (2014) 34-42.
DOI: 10.1016/j.intermet.2014.02.007
Google Scholar