Recovery or Non-Recovery in Al-0.1% Mg and Al-1% Mg Alloy during High-Pressure Torsion Processing

Article Preview

Abstract:

The Al-1% Mg and Al-0.1% Mg alloys were both processed by high-pressure torsion (HPT) at room temperature. In the Al-1% Mg alloy, the hardness values in the disc centre area are lower than in the disc edge area after 1/2 and 1 turn, and the area of lower hardness values in the disc centre decreases as the number of turns increases from 1/2 to 1 turn. Finally, the hardness values are reasonably homogenous along the disc diameter as the number of turns increases to 5 and 10 turns. The Al-0.1% Mg alloy displays a different hardness evolution behavior: the hardness values in the disc centre are higher than at the disc edge 1/2 and 1 turn, and the area of higher hardness values decreases as the numbers of turn increases from 1/2 to 1 turn. The hardness values evolve towards homogeneity along the disc diameter after 5 and 10 turns. EBSD microstructure investigations in the Al-0.1% Mg alloy reveal that a few low-angle boundaries exist at the disc edge after 1/2 turn. It is suggested that the higher hardness values in the disc centre in the Al-0.1% Mg alloy are related to rapid recovery at the disc edge where the material is subjected to heavy straining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

773-778

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Radović, M. Nikačević, Microstructure and properties of cold rolled and annealed Al-Mg alloys, Sci. Tech. Rev 58 (2) (2008) 14-20.

Google Scholar

[2] E. Romhanji, M. Popović, Problems and prospect of Al-Mg alloys application in marine constructions, Metalurgija 12 (2006) 297-307.

Google Scholar

[3] G.B. Burger, A.K. Gupta, P.W. Jeffrey, D.J. Lloyd, Microstructural control of aluminium sheet used in automotive applications, Mater. Characterization 35 (1995) 23-39.

DOI: 10.1016/1044-5803(95)00065-8

Google Scholar

[4] X. Yao, S. Zajac, B. Hutchinson, Estimation of compression flow stress from post-deformation hardness in Al-Mg alloys, Scripta Mater. 41 (1999) 253-258.

DOI: 10.1016/s1359-6462(99)00154-2

Google Scholar

[5] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[6] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[7] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[8] A.P. Zhilyaev, B.K. Kim, G.V. Nurislamova, M.D. Baró, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Scripta Mater. 46 (2002) 575-580.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[9] P. Bazarnik, Y. Huang, M. Lewandowska, T.G. Langdon, Structural impact on the Hall–Petch relationship in an Al–5Mg alloy processed by high-pressure torsion, Mater. Sci. Eng. A626 (2015) 9-15.

DOI: 10.1016/j.msea.2014.12.027

Google Scholar

[10] O. Andreau, J. Gubicza, N.X. Zhang, Y. Huang, P. Jenei, T.G. Langdon, Effect of short-term annealing on the microstructures and flow properties of an Al–1% Mg alloy processed by high-pressure torsion, Mater. Sci. Eng. A615 (2014) 231-239.

DOI: 10.1016/j.msea.2014.07.018

Google Scholar

[11] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A528 (2011) 8198-8024.

DOI: 10.1016/j.msea.2011.07.040

Google Scholar

[12] R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion, Acta Mater. 60 (2012) 3190-3198.

DOI: 10.1016/j.actamat.2012.02.027

Google Scholar

[13] R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, B. Baudelet, Structure and deformation behavior of Armco iron subjected to severe plastic deformation, Acta Mater. 44 (1996) 4705-4712.

DOI: 10.1016/s1359-6454(96)00156-5

Google Scholar

[14] C. Xu, Z. Horita, T.G. Langdon, The evolution of homogeneity in processing by high-pressure torsion, Acta Mater. 55 (2007) 203-212.

DOI: 10.1016/j.actamat.2006.07.029

Google Scholar

[15] M. Kawasaki, R.B. Figueiredo, T.G. Langdon, An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. Acta Mater. 59 (2011) 308-316.

DOI: 10.1016/j.actamat.2010.09.034

Google Scholar

[16] Y. Ito, Z. Horita, Microstructural evolution in pure aluminium processed by high-pressure torsion, Mater. Sci. Eng. A503 (2009) 32-36.

Google Scholar

[17] A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, T.G. Langdon, Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion, Mater. Sci. Eng. A527 (2010) 4864-4869.

DOI: 10.1016/j.msea.2010.04.027

Google Scholar

[18] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, Achieving homogeneity in a Cu-Zr alloy processed by high-pressure torsion, J. Mater. Sci. 47 (2012) 7782-7788.

DOI: 10.1007/s10853-012-6587-8

Google Scholar

[19] M. Kawasaki, B. Ahn, T.G. Langdon, Significance of strain reversals in a two-phase alloy processed by high-pressure torsion, Mater. Sci. Eng. A527 (2010) 7008–7016.

DOI: 10.1016/j.msea.2010.07.090

Google Scholar

[20] M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.

DOI: 10.1007/s10853-013-7687-9

Google Scholar

[21] M. Kawasaki, R.B. Figueiredo, Y. Huang, T.G. langdon, Interpretation of hardness evolution in metals processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 6586-6596.

DOI: 10.1007/s10853-014-8262-8

Google Scholar

[22] G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, Singapore, (1988).

Google Scholar

[23] S.E. Ion, F.J. Humphreys, S.H. White, Dynamic recrystallization and the development of microstructure during the high-temperature deformation of magnesium, Acta Metall. 30 (1982) 1909-(1919).

DOI: 10.1016/0001-6160(82)90031-1

Google Scholar

[24] X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu-Al alloys processed by high-pressure torsion, Scripta Mater. 64 (2011).

DOI: 10.1016/j.scriptamat.2011.01.041

Google Scholar

[25] T.C. Schulthess, P.E.A. Turchi, A. Gonis, T.G. Nieh, System study of stacking fault energies of random Al-based alloys, Acta Mater. 46 (1998) 2215-2221.

DOI: 10.1016/s1359-6454(97)00432-1

Google Scholar