Impact of Silicon, Magnesium and Strontium on Feeding Ability of AlSiMg Cast Alloys

Article Preview

Abstract:

This paper shows how characteristic solidification temperatures, including rigidity temperature can be used to quantify the various feeding mechanisms that occur during solidification of AlSiMg alloys. In addition, the impact of Silicon, Magnesium and Strontium on the temperature intervals of various feeding regions have been analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

784-789

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Campbell, Feeding Mechanisms in Castings,. AFS Cast Metal Research Journal, 1969. 5: pp.1-8.

Google Scholar

[2] C.M. Gourlay and A.K. Dahle, The five feeding mechanisms, Shape Casting: The John Campbell Symposium Edited by Murat Tiryakioglu and Paul N. Crepeau TMS (The Minerals, Metals, & Materials Society), 2005, pp.93-102.

Google Scholar

[3] A. Cibula The Mechanism of Grain Refinement of Sand Castings in Aluminum Alloys, J. Ins. Metals vol. 76, p.312, 1949 Nr. 50.

Google Scholar

[4] P.B. Crossley and L.F. Mondolfo, The Modification of Aluminum Silicon Alloys, Modern Casting vol. 49, p.53/64, (1966).

Google Scholar

[5] L. Bäckerud et al.; Solidification Characteristics of Aluminum Alloys, AFS/SKANALUMINIUM, Oslo, Volume 1 to 3, (1986).

Google Scholar

[6] R. Krohn; Thermal analysis: Metallurgical Thumb printing, Modern Casting, March 1985, p.1−7.

Google Scholar

[7] J.E. Gruzleski, B.M. Closset; The treatment of liquid aluminum-silicon alloys", American Foundryman, s Society, Inc. Des Plaines, Illinois, USA, (1990).

Google Scholar

[8] N. Tenekedjiev, H. Mulazimoglu, B. Closset, J. Gruzleski; Microstructures and Thermal Analysis of Strontium-Treated Aluminum-Silicon Alloys", American Foundryman, s Society, Inc. Des Plaines, Illinois, USA, 1995 p.40−41.

Google Scholar

[9] L. Ananthanarayanan, J.E. Gruzleski; Thermal Analysis Studies on the Effect of Cooling Rate on the Microstructure of the 319 Aluminium Alloy, AFS Transactions, 141, 1992 pp.383-391.

Google Scholar

[10] D. Sparkman; Microstructure by Thermal Analysis, AFS Transactions, Paper 11-068, 119, 2011 pp.413-420.

Google Scholar

[11] M. B. Djurdjevic and G. Huber; "Determination of Rigidity Point/Temperature using Thermal analysis Method and Mechanical Technique, Journal of Alloys and Compounds, 590, 2014, pp.500-506.

DOI: 10.1016/j.jallcom.2013.11.020

Google Scholar

[12] W. Michel. and S, Engler; Speisungskinetik von Aluminum-Silizium Gußlegierungen, Giesserei 75, Nr. 14, 1988, pp.445-448.

Google Scholar

[13] W. Michel and S, Engler; Erstarrungsmorphologie und Speisungsablauf von Aluminium-Silizium Legierungen bei Kokillenguß, Giesserei 77, Nr. 3, 1990, pp.79-82.

Google Scholar

[14] P. Pucher, H. Böttcher, J. Hübler, H. Kaufmann, H. Antrekowisch and P. Uggowitzer: Einfluss der Legierungszusammensetzung auf das Speisungsverhalten der Recyclinglegierung A226 (AlSi9Cu3) im Sand und Kokillenguss, Giesserei 98, Nr. 7 2011, pp.34-44.

Google Scholar

[15] M. Djurdjevic, G. Huber, H. Zak and B. Tonn, Effect of Silicon on the Feeding Ability in Binary Al-Si Alloys, unpublished paper.

Google Scholar

[16] J. Pavlovic-Krstic, Impact of casting parameters and chemical composition on the solidification behavior of AlSiCu hypoeutectic alloys, PhD Theses, Otto-von-Guericke-University Magdeburg, Germany, March (2010).

Google Scholar

[17] A. T. Joenues, The Role of Magnesium on Eutectic Silicon Microstructure, PhD Theses, McGill University, Montreal Canada, March (1991).

Google Scholar