[1]
M.M. Avedesian, M. M. and H. Baker: Magnesium and Magnesium Alloys (ASM Specialty Handbook). Edtion ed.: ASM International, 1999, ISBN 0-87170-657-1.
Google Scholar
[2]
E. Abe, Y. Kawamura, K Hayashi, A. Inoue, Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM, Acta Mater. 50 (2002) 3845-3857.
DOI: 10.1016/s1359-6454(02)00191-x
Google Scholar
[3]
D. Egusa, E. Abe, The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges, Acta Mater. 60 (2012) 166-178.
DOI: 10.1016/j.actamat.2011.09.030
Google Scholar
[4]
Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn(1)Re(2) alloys with long-period stacking ordered structure, Mater. Trans. 48 (2007) 2986-2992.
DOI: 10.2320/matertrans.mer2007142
Google Scholar
[5]
M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Effect of multimodal microstructure on mechanical properties of Mg-Zn-Y extruded alloy, Acta Mater. 59 (2011) 3646-3658.
DOI: 10.1016/j.actamat.2011.02.038
Google Scholar
[6]
M. Okayasu, S. Takeuchi, M. Matsushita, N. Tada, M. Yamasaki, Y. Kawamura, Mechanical properties and failure characteristics of cast and extruded Mg97Y2Zn1 alloys with LPSO phase, Mater. Sci. Eng. A 652 (2016) 14-29.
DOI: 10.1016/j.msea.2015.11.069
Google Scholar
[7]
G. Garcés, P. Perez, S. Cabeza, H.K. Lin, S. Kim, W. Gan, P. Adeva, Reverse tension/compression asymmetry of a Mg-Y-Zn alloys containing LPSO phase, Mat. Sci. Eng. A 647 (2015) 287-293.
DOI: 10.1016/j.msea.2015.09.003
Google Scholar
[8]
G. Garcés, D.G. Morris, M.A. Muňoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, P. Adva, Plasticity analysis by synchrotron radiation in a Mg97Y2Zn1 alloy with bimodal grain structure and containing LPSO phase, Acta Mater 94 (2015).
DOI: 10.1016/j.actamat.2015.04.048
Google Scholar
[9]
Shae K. Kim, Design and developement of high-performance Eco-Mg alloys, in: Frank Czerwinski (Ed. ), Magnesium Alloys –Desing, Processing and Properties, InTech, (2011).
Google Scholar
[10]
C. R. Heiple, S. H. Carpenter: Acoustic Emission Produced by Deformation of Metals and Alloys – A Review: Part I, J. Acoust. Emission 6 (1987), 177.
DOI: 10.2172/6230904
Google Scholar
[11]
J. Bohlen, F. Chmelík, P. Dobroň, D. Letzig, P. Lukáč, K.U. Kainer: Acoustic emission during tensile testing of magnesium AZ alloys, J. Alloys Comp. 378 (2004), 214 – 219.
DOI: 10.1016/j.jallcom.2003.10.101
Google Scholar
[12]
C. R. Heiple, S. H. Carpenter: Acoustic Emission Produced by Deformationof Metals and Alloys – A Review: Part II, J. Acoust. Emission 6 (1987), 215.
DOI: 10.2172/6230904
Google Scholar
[13]
J.P. Toronchuk: Acoustic emission during twinning of zinc single crystals, Mater. Eval, 35 (1977), 51-53.
Google Scholar
[14]
G. Garcés, M.A. Munoz-Marris, D.G. Morris, J.A. Jimenez, P. Perez, P. Adeva, The role of extrusion texture on strength and its anisotropy in a Mg-base alloy composed of the Long-Period-Structural-Order phase, Intermetallics 55 (2014) 167.
DOI: 10.1016/j.intermet.2014.07.015
Google Scholar
[15]
K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Effect of long-period station ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater. 58 (2010) 6282-6293.
DOI: 10.1016/j.actamat.2010.07.050
Google Scholar
[16]
G. Garcés, unpublished results.
Google Scholar
[17]
D. Drozdenko, J. Bohlen, F. Chmelík, P. Lukáč, P. Dobroň, Acoustic emission study on the activity of slip and twin mechanisms during compression testing of magnesium single crystals, Mater. Sci. Eng A 650 (2016) 20-27.
DOI: 10.1016/j.msea.2015.10.033
Google Scholar
[18]
G. Farkas, Z. Trojanová, Z. Száraz, P. Minárik, K. Máthis, Effect of the fibre orientation on the deformation mechanisms of magnesium-alloy based composite, Mater. Sci. Eng. A 643 (2015) 25-31.
DOI: 10.1016/j.msea.2015.07.012
Google Scholar