[1]
R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, WILEY-VCH, Weinheim, Germany, (2014).
Google Scholar
[2]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[3]
N. A. Smirnova, V. I. Levit, V. I. Pilyugin, R. I. Kuznetsov, L. S. Davidova, V. A. Sazonova, Evolution of structure of f. c. c. single crystals during strong plastic deformation, Phys. Met. Metall. 61 6 (1986) 127-134.
Google Scholar
[4]
Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mat. 39, (1998) 1221-1227.
DOI: 10.1016/s1359-6462(98)00302-9
Google Scholar
[5]
K. Tirsatine, H. Azzeddine, T. Baudin, A.L. Helbert, F. Brisset, B. Alili, D. Bradai, Texture and microstructure evolution of Fe-Ni alloy after Accumulative Roll Bonding, J. Alloys Compd. 610 (2014) 352-360.
DOI: 10.1016/j.jallcom.2014.04.173
Google Scholar
[6]
M Alizadeh, Processing of Al/B4C composites by cross-roll accumulative roll bonding, Mater. Lett. 64 (2010) 2641-2643.
DOI: 10.1016/j.matlet.2010.08.039
Google Scholar
[7]
H. Azzeddine, K. Tirsatine, T. Baudin, A.L. Helbert, F. Brisset, D. Bradai, Texture evolution of Fe-Ni alloy sheet produced by cross accumulative roll bonding, Mater. Charact. 97 (2014) 140-149.
DOI: 10.1016/j.matchar.2014.09.009
Google Scholar
[8]
F. Bachmann, R. Hielscher, H. Schaeben, Texture Analysis with MTEX – Free and Open Source Software Toolbox, Solid State Phenom. 160 (2010) 63-68.
DOI: 10.4028/www.scientific.net/ssp.160.63
Google Scholar
[9]
M. Alizadeh, E. Salahinejad, A comparative study on metal–matrix composites fabricated by conventional and cross accumulative roll-bonding processes, J. Alloys Compd. 620 (2015) 180-184.
DOI: 10.1016/j.jallcom.2014.08.249
Google Scholar
[10]
K. Verstraete, A. L Helbert, F Brisset, T Baudin. Comparison between ARB and CARB processes on an AA5754/AA6061 composite, IOP Conf. Ser.: Mater. Sci. Eng. 63 (2014) 012090.
DOI: 10.1088/1757-899x/63/1/012090
Google Scholar
[11]
D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall. 14 (1966) 1479-1484.
DOI: 10.1016/0001-6160(66)90168-4
Google Scholar
[12]
K.S. Suresh, S. Sinha, A. Chaudhary, S. Suwas, Development of microstructure and texture in Copper during warm accumulative roll bonding, Mater. Charact. 70 (2012) 74-82.
DOI: 10.1016/j.matchar.2012.04.017
Google Scholar
[13]
R.K. Sitarama, K.M. Ghanashyam, K.A. Padmanabhan, K. Muraleedharan, N.P. Gurao, G. Wilde, Grain size and grain boundary character distribution in ultra-fine grained (ECAP) nickel, Mater. Sci. Eng. A 491 (2008) 1-7.
DOI: 10.1016/j.msea.2007.11.072
Google Scholar
[14]
J. Tarasiuk, Ph. Gerber, B. Bacroix. Estimation of recrystallized volume fraction from EBSD data. Acta Mater. 50 (2002) 1467-1477.
DOI: 10.1016/s1359-6454(02)00005-8
Google Scholar
[15]
S. Wronski, J. Tarasiuk, B. Bacroix, A. Baczmanski, Chedly Braham. Investigation of plastic deformation heterogeneities in duplex steel by EBSD, Mater. Charact. 73 (2012) 52-60.
DOI: 10.1016/j.matchar.2012.07.016
Google Scholar
[16]
T. Al-Samman, G. Gottstein, Influence of strain path change on the rolling behavior of twin roll cast magnesium alloy, Script Mater. 59 (2008) 760-763.
DOI: 10.1016/j.scriptamat.2008.06.023
Google Scholar
[17]
P.P. Bhattacharjee, M. Joshi, V.P. Chaudhary, M. Zaid. The effect of starting grain size on the evolution of microstructure and texture in nickel during processing by cross-rolling. Mater. Charact. 76 (2013) 21-27.
DOI: 10.1016/j.matchar.2012.11.005
Google Scholar
[18]
K. Mehnert, H.S. Ubhi, A.P. Day. Comparison of texture data measured by ESBD and conventional x-ray diffraction, in: J. A. Szpunar (Ed), Proceedings of the 12th International Conference on Textures of Materials, NRC Research Press, Ottawa, 1999, pp.217-222.
Google Scholar