[1]
J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, Cambridge, (2010).
Google Scholar
[2]
A. Sozinov, N. Lanska, A. Soroka, and W. Zou, 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite, Appl. Phys. Lett. 102 (2013) 021902.
DOI: 10.1063/1.4775677
Google Scholar
[3]
K. Ullakko, J. K. Huang, C. Kanter, V. V. Kokorin, and R. C. O'Handley. Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) (1966).
DOI: 10.1063/1.117637
Google Scholar
[4]
O. Heczko, N. Scheerbaum, and O. Gutfleisch. Magnetic shape memory phenomena, in: J. Ping Liu et al. (Eds), Nanoscale Magnetic Materials and Applications, New York: Springer US, 2009, p.399–439.
DOI: 10.1007/978-0-387-85600-1_14
Google Scholar
[5]
O. Heczko, Magnetic shape memory effect and highly mobile twin boundaries, Mat. Sci. Tech. 30 (2014) 1559–1578.
DOI: 10.1179/1743284714y.0000000599
Google Scholar
[6]
V. Kopecký, O. Perevertov, L. Straka, M. Sevcík, and O. Heczko, Equivalence of mechanical and magnetic force in magnetic shape memory effect, Acta Phys. Pol. A. 128, (2015) 754–757.
DOI: 10.12693/aphyspola.128.754
Google Scholar
[7]
L. Straka, O. Heczko, and H. Hänninen. Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment . Acta Mater, 56, (2008) 5492 – 5499.
DOI: 10.1016/j.actamat.2008.07.020
Google Scholar
[8]
K. Richterová, et al., Effect of Compressive Load on Magnetic Shape Memory Effect in Ni-Mn-Ga Single Crystal, Acta Phys. Pol. A, 128 (2015) 704–708.
DOI: 10.12693/aphyspola.128.704
Google Scholar
[9]
L. Straka et al. Highly mobile twinned interface in 10M modulated Ni-Mn- Ga martensite: Analysis beyond the tetragonal approximation of lattice, Acta Mater. 59 (2011) 7450-7462.
DOI: 10.1016/j.actamat.2011.09.020
Google Scholar
[10]
Y. Ge et al., Magnetic domain evolution with applied field in a Ni-Mn-Ga magnetic shape memory alloy, Scripta Mat. 54 (2006) 2155-2160.
DOI: 10.1016/j.scriptamat.2006.02.037
Google Scholar
[11]
O. Heczko, P. Cejpek, J. Drahokoupil, V. Holy, Structure and microstructure of the Ni-Mn-Ga single crystal exhibiting magnetic shape memory effect analysed by high resolution X-ray diffraction, submitted to Acta Mat.
DOI: 10.1016/j.actamat.2016.05.047
Google Scholar
[12]
A. Sozinov, N. Lanska, A. Soroka, and L. Straka. Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite. Appl. Phys. Lett. 51 (2011) 124103.
DOI: 10.1063/1.3640489
Google Scholar
[13]
H. Seiner, L. Straka, and O. Heczko. A microstructural model of motion of macro-twin interfaces in Ni-Mn-Ga 10M martensite. J. Mech. Phys. Solids 64 (2014) 198–211.
DOI: 10.1016/j.jmps.2013.11.004
Google Scholar
[14]
O. Heczko,L. Straka, H. Seiner, Different microstructures of mobile twin boundaries in 10 M modulated Ni-Mn-Ga martensite, Acta Mat. 61 (2013) 622-631.
DOI: 10.1016/j.actamat.2012.10.007
Google Scholar
[15]
R. Chulist, L. Straka, N. Lanska, A. Soroka, A. Sozinov, and W. Skrotzki, Characterization of mobile type I and type II twin boundaries in 10M modulated Ni-Mn-Ga martensite by electron backscatter diffraction. Acta Mater. 61 (2013) 1913–(1920).
DOI: 10.1016/j.actamat.2012.12.012
Google Scholar
[16]
O. Heczko, D. Vokoun, V. Kopecký, and M. Beleggia, Effect of Magnetostatic Interactions on Twin Boundary Motion in NiMnGa Magnetic Shape Memory Alloy, IEEE Magn. Lett. 6 (2015) 1–4.
DOI: 10.1109/lmag.2015.2449252
Google Scholar
[17]
M. Chmielus, C. Witherspoon, K. Ullakko, P. Müllner, and R. Schneider, "Effects of surface damage on twinning stress and the stability of twin microstructures of magnetic shape memory alloys, Acta Mater. 59 (2011) 2948–2956.
DOI: 10.1016/j.actamat.2011.01.035
Google Scholar
[18]
V. Novak, P. Sittner, S. Ignacova, T. Cernoch, Transformation behaviour of prism-shaped shape memory alloy single crystals, Mat. Sci. Eng. A 438-440 (2006) 755-762.
DOI: 10.1016/j.msea.2006.02.192
Google Scholar
[19]
L. Straka, H. Hanninen, O. Heczko, Temperature dependence of single twin boundary motion in Ni-Mn-Ga martensite, Appl. Phys. Lett. 98, (2011) 141902.
DOI: 10.1063/1.3573860
Google Scholar
[20]
L. Straka et al., The relation between lattice parameters and very low twinning stress in Ni50Mn25+xGa25−x magnetic shape memory alloys, Smart Mater. Struct. 25 (2016) 025001.
DOI: 10.1088/0964-1726/25/2/025001
Google Scholar