Magnetic Shape Memory Effect in Ni-Mn-Ga Single Crystal

Article Preview

Abstract:

Magnetic shape memory effect is general name for several effects in which the most visible feature is huge strain induced by magnetic field. Magnetic field-induced structure reorientation (MIR) occurs due to motion of twin boundaries in single phase. As the magnetic field is a relatively weak force compared with mechanical stress, very high mobility of twin boundaries is crucial. Here we study the properties of martensite relevant for this effect using X-ray diffraction, optical and electron microscopy, magnetic observation and mechanical testing. In 10M modulated martensite, two types of mobile twin boundary (type I and type II) are observed with complex layered microstructures consisting of a hierarchy of twinning systems. We search for analogue with non-magnetic Cu-Ni-Al shape memory alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

738-743

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, Cambridge, (2010).

Google Scholar

[2] A. Sozinov, N. Lanska, A. Soroka, and W. Zou, 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite, Appl. Phys. Lett. 102 (2013) 021902.

DOI: 10.1063/1.4775677

Google Scholar

[3] K. Ullakko, J. K. Huang, C. Kanter, V. V. Kokorin, and R. C. O'Handley. Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) (1966).

DOI: 10.1063/1.117637

Google Scholar

[4] O. Heczko, N. Scheerbaum, and O. Gutfleisch. Magnetic shape memory phenomena, in: J. Ping Liu et al. (Eds), Nanoscale Magnetic Materials and Applications, New York: Springer US, 2009, p.399–439.

DOI: 10.1007/978-0-387-85600-1_14

Google Scholar

[5] O. Heczko, Magnetic shape memory effect and highly mobile twin boundaries, Mat. Sci. Tech. 30 (2014) 1559–1578.

DOI: 10.1179/1743284714y.0000000599

Google Scholar

[6] V. Kopecký, O. Perevertov, L. Straka, M. Sevcík, and O. Heczko, Equivalence of mechanical and magnetic force in magnetic shape memory effect, Acta Phys. Pol. A. 128, (2015) 754–757.

DOI: 10.12693/aphyspola.128.754

Google Scholar

[7] L. Straka, O. Heczko, and H. Hänninen. Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment . Acta Mater, 56, (2008) 5492 – 5499.

DOI: 10.1016/j.actamat.2008.07.020

Google Scholar

[8] K. Richterová, et al., Effect of Compressive Load on Magnetic Shape Memory Effect in Ni-Mn-Ga Single Crystal, Acta Phys. Pol. A, 128 (2015) 704–708.

DOI: 10.12693/aphyspola.128.704

Google Scholar

[9] L. Straka et al. Highly mobile twinned interface in 10M modulated Ni-Mn- Ga martensite: Analysis beyond the tetragonal approximation of lattice, Acta Mater. 59 (2011) 7450-7462.

DOI: 10.1016/j.actamat.2011.09.020

Google Scholar

[10] Y. Ge et al., Magnetic domain evolution with applied field in a Ni-Mn-Ga magnetic shape memory alloy, Scripta Mat. 54 (2006) 2155-2160.

DOI: 10.1016/j.scriptamat.2006.02.037

Google Scholar

[11] O. Heczko, P. Cejpek, J. Drahokoupil, V. Holy, Structure and microstructure of the Ni-Mn-Ga single crystal exhibiting magnetic shape memory effect analysed by high resolution X-ray diffraction, submitted to Acta Mat.

DOI: 10.1016/j.actamat.2016.05.047

Google Scholar

[12] A. Sozinov, N. Lanska, A. Soroka, and L. Straka. Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite. Appl. Phys. Lett. 51 (2011) 124103.

DOI: 10.1063/1.3640489

Google Scholar

[13] H. Seiner, L. Straka, and O. Heczko. A microstructural model of motion of macro-twin interfaces in Ni-Mn-Ga 10M martensite. J. Mech. Phys. Solids 64 (2014) 198–211.

DOI: 10.1016/j.jmps.2013.11.004

Google Scholar

[14] O. Heczko,L. Straka, H. Seiner, Different microstructures of mobile twin boundaries in 10 M modulated Ni-Mn-Ga martensite, Acta Mat. 61 (2013) 622-631.

DOI: 10.1016/j.actamat.2012.10.007

Google Scholar

[15] R. Chulist, L. Straka, N. Lanska, A. Soroka, A. Sozinov, and W. Skrotzki, Characterization of mobile type I and type II twin boundaries in 10M modulated Ni-Mn-Ga martensite by electron backscatter diffraction. Acta Mater. 61 (2013) 1913–(1920).

DOI: 10.1016/j.actamat.2012.12.012

Google Scholar

[16] O. Heczko, D. Vokoun, V. Kopecký, and M. Beleggia, Effect of Magnetostatic Interactions on Twin Boundary Motion in NiMnGa Magnetic Shape Memory Alloy, IEEE Magn. Lett. 6 (2015) 1–4.

DOI: 10.1109/lmag.2015.2449252

Google Scholar

[17] M. Chmielus, C. Witherspoon, K. Ullakko, P. Müllner, and R. Schneider, "Effects of surface damage on twinning stress and the stability of twin microstructures of magnetic shape memory alloys, Acta Mater. 59 (2011) 2948–2956.

DOI: 10.1016/j.actamat.2011.01.035

Google Scholar

[18] V. Novak, P. Sittner, S. Ignacova, T. Cernoch, Transformation behaviour of prism-shaped shape memory alloy single crystals, Mat. Sci. Eng. A 438-440 (2006) 755-762.

DOI: 10.1016/j.msea.2006.02.192

Google Scholar

[19] L. Straka, H. Hanninen, O. Heczko, Temperature dependence of single twin boundary motion in Ni-Mn-Ga martensite, Appl. Phys. Lett. 98, (2011) 141902.

DOI: 10.1063/1.3573860

Google Scholar

[20] L. Straka et al., The relation between lattice parameters and very low twinning stress in Ni50Mn25+xGa25−x magnetic shape memory alloys, Smart Mater. Struct. 25 (2016) 025001.

DOI: 10.1088/0964-1726/25/2/025001

Google Scholar