[1]
G.H. Feng, S.X. Zhou, G. Yang, Z.C. Lu, Effect of stable magnetic field on grain refinement of low carbon Mn-Nb steel, J. Iron Steel Res. 12 (2000) 27-30.
Google Scholar
[2]
C.M. Chen, S.W. Chen, Electric current effects on Sn/Ag interfacial reactions, J. Electron. Mater. 28 (1999) 902-906.
DOI: 10.1007/s11664-999-0217-5
Google Scholar
[3]
S.W. Chen, C.M. Chen, W.C. Liu, Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, J. Electron. Mater. 27 (1998) 1193-1199.
DOI: 10.1007/s11664-998-0068-5
Google Scholar
[4]
X.T. Liu, J.Z. Cui, F.X. Yu, Effect of an alternating magnetic field on the phase formation in Al-Cu couple, J. Mater. Sci. 39 (2004) 2935-2936.
DOI: 10.1023/b:jmsc.0000021485.17417.3b
Google Scholar
[5]
D.A. Molodov, S. Bhaumik, X. Molodova, G. Gottstein, Magnetically enhanced recrystallization in an aluminum alloy, Scr. Mater. 55 (2006) 995-998.
DOI: 10.1016/j.scriptamat.2006.08.018
Google Scholar
[6]
L.Z. He, Y.H. Cao, X.T. Liu, H.T. Zhang, P. Wang, C. Lu, Y.P. Guo, J.Z. Cui, Influences of magnetic annealing on the grain growth in a cryoECAPed 1050 aluminum alloy, Mater. Charact. 84 (2013) 188-195.
DOI: 10.1016/j.matchar.2013.07.020
Google Scholar
[7]
H. Conrad, Z. Guo, A.F. Sprecher, Effect of an electric field on the recovery and recrystallization of Al and Cu, Scr. Metall. Mater. 23 (1989) 821-823.
DOI: 10.1016/0036-9748(89)90252-4
Google Scholar
[8]
L.Z. He, X.H. Li, P. Zhu, Y.P. Guo, J.Z. Cui, Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization, Mater. Charact. 71 (2012) 19-23.
DOI: 10.1016/j.matchar.2012.05.014
Google Scholar
[9]
P.F. Jia, Y.H. Cao, Y.D. Geng, L.Z. He, N. Xiao, J.Z. Cui, Effects of D.C. current on the phase transformation in 7055 alloy during homogenization, Mater. Charact. 96 (2014) 21-27.
DOI: 10.1016/j.matchar.2014.07.017
Google Scholar
[10]
M.Z. Zhou, D.Q. Yi, D.Y. Yin, T.R. Hong, D.Y. Huang, Effect of electric field on kinetics of formation of S phase in 2E12 aluminum alloy, Trans. Nonferrous Met. Soc. China 20 (2010) 1290-1293.
Google Scholar
[11]
W. Liu, K.M. Liang, Y.K. Zhong, J.Z. Cui, Influence of homogenization treatment in an electric field on the workability of 1420 Al-Li alloy during hot rolling, J. Mater. Sci. Lett. 15 (1996) 1918-(1920).
DOI: 10.1007/bf00264096
Google Scholar
[12]
C.S. He, Y.D. Zhang, Y.N. Wang, X. Zhao, L. Zuo, C. Esling, Texture and microstructure development in cold-rolled interstitial free (IF) steel sheet during electric field annealing, Scr. Mater. 48 (2003) 737-742.
DOI: 10.1016/s1359-6462(02)00552-3
Google Scholar
[13]
W. Liu, J.Z. Cui, A study on the ageing treatment of 2091 Al-Li alloy with an electric field, J. Mater. Sci. Lett. 16 (1997) 1410-1411.
Google Scholar
[14]
K. Jung, H. Conrad, Effects of an electric field applied during the solution heat treatment of the Al-Mg-Si-Cu alloy AA 6111 on the subsequent natural aging kinetics and tensile properties, Z. Metallkd. 97 (2006) 145-149.
DOI: 10.3139/146.101216
Google Scholar
[15]
X.L. Wang, W.B. Dai, R. Wang, X.Z. Tian, X. Zhao, Enhanced phase transformation and variant selection by electric current pulses in a Cu-Zn alloy, J. Mater. Res. 29 (2014) 975-980.
DOI: 10.1557/jmr.2014.76
Google Scholar
[16]
G.M. Ludtka, R.A. Jaramillo, R.A. Kisner, D.M. Nicholson, J.B. Wilgen, G. Mackiewicz-Ludtka, P.N. Kalu, In situ evidence of enhanced transformation kinetics in a medium carbon steel due to a high magnetic field, Scr. Mater. 51 (2004) 171-174.
DOI: 10.1016/j.scriptamat.2004.03.029
Google Scholar
[17]
Y.D. Zhang, C. Esling, J.S. Lecomte, C.S. He, X. Zhao, L. Zuo, Grain boundary characteristics and texture formation in amedium carbon steel during its austenitic decomposition in a high magnetic field, Acta Mater. 53 (2005) 5213-5221.
DOI: 10.1016/j.actamat.2005.08.007
Google Scholar
[18]
M. Shimotomai, K. Maruta, Aligned two-phase structures in Fe-C alloys, Scr. Mater. 42 (2000) 499-503.
DOI: 10.1016/s1359-6462(99)00381-4
Google Scholar
[19]
D.A. Molodov, P.J. Konijnenberg, Grain boundary and grain structure control through application of a high magnetic field, Scr. Mater. 54 (2006) 977-981.
DOI: 10.1016/j.scriptamat.2005.11.038
Google Scholar
[20]
J. Zhang, L.H. Zhan, S.F. Jia, Effects of electric pulse current on the aging kinetics of 2219 aluminum alloy, Adv. Mater. Sci. Eng. 2014 (2014) 1-8.
Google Scholar
[21]
Z.Q. Wang, Y.B. Zhong, Z.S. Lei, W.L. Ren, Z.M. Ren, K. Deng, Microstructure and electric conductivity of Cu-Cr-Zr alloy aged with dc electric current, J. Alloy Comp. 471 (2009) 172-175.
DOI: 10.1016/j.jallcom.2008.03.054
Google Scholar
[22]
I. Dutta, S.M. Allen, A calorimetric study of precipitation in commercial aluminum alloy 6061, J. Mater. Sci. Lett. 10 (1991) 323-326.
DOI: 10.1007/bf00719697
Google Scholar
[23]
S. Esmaeili, D.J. Lloyd, W.J. Poole, A yield strength model for the Al-Mg-Si-Cu alloy AA6111, Acta Mater. 51 (2003): 2243-2257.
DOI: 10.1016/s1359-6454(03)00028-4
Google Scholar