Effects of Electric Current on the Microstructures and Mechanical Properties of Artificial Aged 6061 Alloy

Article Preview

Abstract:

The influences of electric current on the microstructures and mechanical properties of 6061 aluminum alloy were investigated by electric conductivity measurement, tensile test, scanning electron microscope and transmission electron microscope. When applying electric current both at solid solution and ageing treatment, the alloy has the highest peak strength, and the time to peak strength shortens by 12h. The electric current applying during either solid solution or ageing, increases the density and size of β'' phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

726-731

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.H. Feng, S.X. Zhou, G. Yang, Z.C. Lu, Effect of stable magnetic field on grain refinement of low carbon Mn-Nb steel, J. Iron Steel Res. 12 (2000) 27-30.

Google Scholar

[2] C.M. Chen, S.W. Chen, Electric current effects on Sn/Ag interfacial reactions, J. Electron. Mater. 28 (1999) 902-906.

DOI: 10.1007/s11664-999-0217-5

Google Scholar

[3] S.W. Chen, C.M. Chen, W.C. Liu, Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, J. Electron. Mater. 27 (1998) 1193-1199.

DOI: 10.1007/s11664-998-0068-5

Google Scholar

[4] X.T. Liu, J.Z. Cui, F.X. Yu, Effect of an alternating magnetic field on the phase formation in Al-Cu couple, J. Mater. Sci. 39 (2004) 2935-2936.

DOI: 10.1023/b:jmsc.0000021485.17417.3b

Google Scholar

[5] D.A. Molodov, S. Bhaumik, X. Molodova, G. Gottstein, Magnetically enhanced recrystallization in an aluminum alloy, Scr. Mater. 55 (2006) 995-998.

DOI: 10.1016/j.scriptamat.2006.08.018

Google Scholar

[6] L.Z. He, Y.H. Cao, X.T. Liu, H.T. Zhang, P. Wang, C. Lu, Y.P. Guo, J.Z. Cui, Influences of magnetic annealing on the grain growth in a cryoECAPed 1050 aluminum alloy, Mater. Charact. 84 (2013) 188-195.

DOI: 10.1016/j.matchar.2013.07.020

Google Scholar

[7] H. Conrad, Z. Guo, A.F. Sprecher, Effect of an electric field on the recovery and recrystallization of Al and Cu, Scr. Metall. Mater. 23 (1989) 821-823.

DOI: 10.1016/0036-9748(89)90252-4

Google Scholar

[8] L.Z. He, X.H. Li, P. Zhu, Y.P. Guo, J.Z. Cui, Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization, Mater. Charact. 71 (2012) 19-23.

DOI: 10.1016/j.matchar.2012.05.014

Google Scholar

[9] P.F. Jia, Y.H. Cao, Y.D. Geng, L.Z. He, N. Xiao, J.Z. Cui, Effects of D.C. current on the phase transformation in 7055 alloy during homogenization, Mater. Charact. 96 (2014) 21-27.

DOI: 10.1016/j.matchar.2014.07.017

Google Scholar

[10] M.Z. Zhou, D.Q. Yi, D.Y. Yin, T.R. Hong, D.Y. Huang, Effect of electric field on kinetics of formation of S phase in 2E12 aluminum alloy, Trans. Nonferrous Met. Soc. China 20 (2010) 1290-1293.

Google Scholar

[11] W. Liu, K.M. Liang, Y.K. Zhong, J.Z. Cui, Influence of homogenization treatment in an electric field on the workability of 1420 Al-Li alloy during hot rolling, J. Mater. Sci. Lett. 15 (1996) 1918-(1920).

DOI: 10.1007/bf00264096

Google Scholar

[12] C.S. He, Y.D. Zhang, Y.N. Wang, X. Zhao, L. Zuo, C. Esling, Texture and microstructure development in cold-rolled interstitial free (IF) steel sheet during electric field annealing, Scr. Mater. 48 (2003) 737-742.

DOI: 10.1016/s1359-6462(02)00552-3

Google Scholar

[13] W. Liu, J.Z. Cui, A study on the ageing treatment of 2091 Al-Li alloy with an electric field, J. Mater. Sci. Lett. 16 (1997) 1410-1411.

Google Scholar

[14] K. Jung, H. Conrad, Effects of an electric field applied during the solution heat treatment of the Al-Mg-Si-Cu alloy AA 6111 on the subsequent natural aging kinetics and tensile properties, Z. Metallkd. 97 (2006) 145-149.

DOI: 10.3139/146.101216

Google Scholar

[15] X.L. Wang, W.B. Dai, R. Wang, X.Z. Tian, X. Zhao, Enhanced phase transformation and variant selection by electric current pulses in a Cu-Zn alloy, J. Mater. Res. 29 (2014) 975-980.

DOI: 10.1557/jmr.2014.76

Google Scholar

[16] G.M. Ludtka, R.A. Jaramillo, R.A. Kisner, D.M. Nicholson, J.B. Wilgen, G. Mackiewicz-Ludtka, P.N. Kalu, In situ evidence of enhanced transformation kinetics in a medium carbon steel due to a high magnetic field, Scr. Mater. 51 (2004) 171-174.

DOI: 10.1016/j.scriptamat.2004.03.029

Google Scholar

[17] Y.D. Zhang, C. Esling, J.S. Lecomte, C.S. He, X. Zhao, L. Zuo, Grain boundary characteristics and texture formation in amedium carbon steel during its austenitic decomposition in a high magnetic field, Acta Mater. 53 (2005) 5213-5221.

DOI: 10.1016/j.actamat.2005.08.007

Google Scholar

[18] M. Shimotomai, K. Maruta, Aligned two-phase structures in Fe-C alloys, Scr. Mater. 42 (2000) 499-503.

DOI: 10.1016/s1359-6462(99)00381-4

Google Scholar

[19] D.A. Molodov, P.J. Konijnenberg, Grain boundary and grain structure control through application of a high magnetic field, Scr. Mater. 54 (2006) 977-981.

DOI: 10.1016/j.scriptamat.2005.11.038

Google Scholar

[20] J. Zhang, L.H. Zhan, S.F. Jia, Effects of electric pulse current on the aging kinetics of 2219 aluminum alloy, Adv. Mater. Sci. Eng. 2014 (2014) 1-8.

Google Scholar

[21] Z.Q. Wang, Y.B. Zhong, Z.S. Lei, W.L. Ren, Z.M. Ren, K. Deng, Microstructure and electric conductivity of Cu-Cr-Zr alloy aged with dc electric current, J. Alloy Comp. 471 (2009) 172-175.

DOI: 10.1016/j.jallcom.2008.03.054

Google Scholar

[22] I. Dutta, S.M. Allen, A calorimetric study of precipitation in commercial aluminum alloy 6061, J. Mater. Sci. Lett. 10 (1991) 323-326.

DOI: 10.1007/bf00719697

Google Scholar

[23] S. Esmaeili, D.J. Lloyd, W.J. Poole, A yield strength model for the Al-Mg-Si-Cu alloy AA6111, Acta Mater. 51 (2003): 2243-2257.

DOI: 10.1016/s1359-6454(03)00028-4

Google Scholar