Preparation of Mg-TM-Y (TM=Transition Metal) Alloys with Long Period Stacking Ordered Phase and their Superior Mechanical Properties

Article Preview

Abstract:

Mg-Ni-Y alloy with composition ratio of 1 : 2 (Ni : Y) consisted of Mg, and 18R-type long period stacking ordered (LPSO) phases, whereas composition ratio of 1 : 1 (Ni : Y) consisted of Mg,14H-type LPSO and Mg2Ni phases, respectively. After hot-rolling at 693K, strong basal texture parallel to the plane sheet was formed in the LPSO, and Mg phases. Tensile test was performed along rolling direction (R.D) from room temperature (R.T) to 573K. The Mg98Ni1Y1, Mg96Ni2Y2, Mg94Ni3Y3, Mg97Ni1Y2 and Mg94Ni2Y4 rolled sheets exhibited 0.2% proof stress (σ0.2) of 232MPa, 255MPa, 358MPa, 337MPa and 393MPa, and elongation (δ) of 6%, 5%, 7%, 15% and 7% at R.T, respectively. The σ0.2 of the Mg-Ni-Y rolled sheet tend to increase with increasing of area fraction of the LPSO phase. After annealing at 773K for 0.6ks, the δ of Mg-Ni-Y rolled sheet tend to increase, while the σ0.2 decreased due to randomization of the Mg phase by re-crystallization. The Mg-Ni-Y rolled sheets exhibited high σ0.2 above 200MPa at 473K. Additionally, it was noted that σ0.2 of the Mg94Ni2Y4 rolled sheet exhibited 329MPa at 473K and 211MPa at 573K. Thus, the LPSO phase have high thermal stability and is attribute to strengthening of the Mg-Ni-Y alloy sheet at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

815-819

Citation:

Online since:

November 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto: Material Trans. 42 (2001), p.1172.

Google Scholar

[2] E. Abe, Y. Kawamura, K. Hayashi, A. Inoue: Acta Materialia. 50 (2002), p.3845.

Google Scholar

[3] E. Abe, A. Ono, Y. Kawamura, T. Itoi, M. Yamasaki, Y. Kawamura: Philos. Mag. Lett. 90 (2011), p.690.

Google Scholar

[4] K. Amiya, T. Ohsuna, A. Inoue: Mater. Trans. 44 (2003), p.2151.

Google Scholar

[5] T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scripta Materialia, 51 (2004), p.107.

DOI: 10.1016/j.scriptamat.2004.04.003

Google Scholar

[6] M. Matsuda, S. Ii, Y. Ikuhara, M. Nishida: Mater. Sci. and Eng. A 386 (2004), p.447.

Google Scholar

[7] T. Itoi, K. Takahashi, H. Moriyama, M. Hirohashi, Scripta Materialia, 59 (2008), p.1155.

Google Scholar

[8] H. Yokobayashi, K. Kishida, H. Inui, M. Yamasaki, Y. Kawamura: Acta Materialia. 59 (2011), p.7287.

Google Scholar

[9] Z. P. Luo, S. Q. Zhang: Mater. Sci. Lett. 19 (2000), p.813.

Google Scholar

[10] C. Xu, M. Zheng, S. Xu, K. Wu, E. Wang, S. Kamado, G. Wang, X. Lv: Maer. Sci. and Eng. 547 (2012), p.93.

Google Scholar

[11] T. Itoi, T. Inazawa, M. Yamasaki, Y. Kawamura and M. Hirohashi: Mater. Sci. and Eng. A 560 (2013), p.216.

Google Scholar

[12] C. Xu, M. Zheng, S. Xu, K. Wu, E. Wang , G. Fan, S. Kamado: Maer. Sci. and Eng. 643 (2015), p.137.

Google Scholar

[13] M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura: Acta Materialia. 59 (2011), p.3646.

Google Scholar

[14] J. B. Hess, C. S. Barrett: Trans AM. Inst. Min. Met. Eng. 185 (1949), p.599.

Google Scholar

[15] K. Hagihara, N. Yokotani, Y. Umakoshi: Intermetallics. 18 (2009), p.267.

Google Scholar