Surface Engineering of Metal Oxide Photoelectrodes for Improved Band Alignment in Solar Water Splitting Cells

Article Preview

Abstract:

Several earth-abundant transition-metal oxides (e.g. Fe2O3, CoO, and Cu2O) possessing suitable band gaps for solar water splitting exist, but energy level alignment is often sub-optimal, i.e. the conduction and valence bands do not straddle the water oxidation and reduction potentials. Here, using a nanocrystalline-TiO2-based photoelectrochemical cell as a model system, we investigate the effect of tuning the semiconductor energy levels by adding Li+ ions to the electrolyte. The effect of LiClO4 addition on band edges, interfacial recombination resistance, electron diffusion length, and charge-separation efficiency were quantified by impedance spectroscopy and analysis of incident photon-to-current efficiency spectra. We find that the TiO2 band edges are shifted toward positive potentials by the addition of Li+, and that this increases the apparent electron diffusion length without affecting the charge-separation efficiency, most likely due to a change in the driving force for O2 reduction. These results should prove useful in the modeling and optimization of solar water splitting cells employing metal oxide photoelectrodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

832-837

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Solar Water Splitting Cells, Chemical Reviews 110 (2010) 6446-6473.

DOI: 10.1021/cr1002326

Google Scholar

[3] R. Memming, Semiconductor Electrochemistry, Wiley-VCH, Weinheim, (2001).

Google Scholar

[4] M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, A Review and Recent Developments in Photocatalytic Water-Splitting using TiO2 for Hydrogen Production, Renewable and Sustainable Energy Reviews 11 (2007) 401-425.

DOI: 10.1016/j.rser.2005.01.009

Google Scholar

[5] S. De Wolf, J. Holovsky, S. -J. Moon, P. Löper, B. Niesen, M. Ledinsky, F. -J. Haug, J. -H. Yum and C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, The Journal of Physical Chemistry Letters 5 (2014).

DOI: 10.1021/jz500279b

Google Scholar

[6] M. Grätzel, Dye-sensitized Solar Cells, Journal of Photochemistry and Photobiology C-Photochemistry Reviews 4 (2003) 145-153.

DOI: 10.1016/s1389-5567(03)00026-1

Google Scholar

[7] S. Gimenez, H. K. Dunn, P. Rodenas, F. Fabregat-Santiago, S. G. Miralles, E. M. Barea, R. Trevisan, A. Guerrero and J. Bisquert, Carrier density and Interfacial Kinetics of Mesoporous TiO2 in Aqueous Electrolyte Determined by Impedance Spectroscopy, Journal of Electroanalytical Chemistry 668 (2012).

DOI: 10.1016/j.jelechem.2011.12.019

Google Scholar

[8] W. H. Leng, P. R. F. Barnes, M. Juozapavicius, B. C. O'Regan and J. R. Durrant, Electron Diffusion Length in Mesoporous Nanocrystalline TiO2 Photoelectrodes during Water Oxidation, The Journal of Physical Chemistry Letters 1 (2010) 967-972.

DOI: 10.1021/jz100051q

Google Scholar

[9] J. Bisquert, Physical Electrochemistry of Nanostructured Devices, Physical Chemistry Chemical Physics 10 (2008) 49-72.

Google Scholar

[10] J. R. Jennings and Q. Wang, Influence of Lithium Ion Concentration on Electron Injection, Transport, and Recombination in Dye-Sensitized Solar Cells, Journal of Physical Chemistry C 114 (2010) 1715-1724.

DOI: 10.1021/jp9104129

Google Scholar

[11] J. Bisquert, Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer, Journal of Physical Chemistry B 106 (2002) 325-333.

DOI: 10.1021/jp011941g

Google Scholar

[12] F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró and J. Bisquert, Characterization of Nanostructured Hybrid and Organic Solar Cells by Impedance Spectroscopy, Physical Chemistry Chemical Physics 13 (2011) 9083-9118.

DOI: 10.1039/c0cp02249g

Google Scholar